Antimicrobial peptide moricin induces ROS mediated caspase-dependent apoptosis in human triple-negative breast cancer via suppression of notch pathway.

Imran Ahmad, Saurabh Pal, Ranjana Singh, Khursheed Ahmad, Nilanjan Dey, Aditi Srivastava, Rumana Ahmad, Muath Suliman, Mohammad Y Alshahrani, Md Abul Barkat, Sahabjada Siddiqui
Author Information
  1. Imran Ahmad: Department of Biochemistry, King George's Medical University, Lucknow, 226003, India. imranahmadysbiochem@kgmcindia.edu.
  2. Saurabh Pal: Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India.
  3. Ranjana Singh: Department of Biochemistry, King George's Medical University, Lucknow, 226003, India. ranjanasingh@kgmcindia.edu.
  4. Khursheed Ahmad: Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India.
  5. Nilanjan Dey: Department of Chemistry, BITS- Pilani Hyderabad Campus, Hyderabad, 500078, Telangana, India.
  6. Aditi Srivastava: Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India.
  7. Rumana Ahmad: Department of Biochemistry, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India.
  8. Muath Suliman: Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
  9. Mohammad Y Alshahrani: Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
  10. Md Abul Barkat: Department of Pharmaceutics, College of Pharmacy, University of Hafr Al-Batin, Al Jamiah, Hafr Al Batin, 39524, Saudi Arabia.
  11. Sahabjada Siddiqui: Department of Biotechnology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, 226003, India. sahabjadabiotech04@gmail.com.

Abstract

BACKGROUND: Breast cancer is the world's most prevalent cancer among women. Microorganisms have been the richest source of antibiotics as well as anticancer drugs. Moricin peptides have shown antibacterial properties; however, the anticancer potential and mechanistic insights into moricin peptide-induced cancer cell death have not yet been explored.
METHODS: An investigation through in silico analysis, analytical methods (Reverse Phase-High Performance Liquid Chromatography (RP-HPLC), mass spectroscopy (MS), circular dichroism (CD), and in vitro studies, has been carried out to delineate the mechanism(s) of moricin-induced cancer cell death. An in-silico analysis was performed to predict the anticancer potential of moricin in cancer cells using Anti CP and ACP servers based on a support vector machine (SVM). Molecular docking was performed to predict the binding interaction between moricin and peptide-related cancer signaling pathway(s) through the HawkDOCK web server. Further, in vitro anticancer activity of moricin was performed against MDA-MB-231 cells.
RESULTS: In silico observation revealed that moricin is a potential anticancer peptide, and protein-protein docking showed a strong binding interaction between moricin and signaling proteins. CD showed a predominant helical structure of moricin, and the MS result determined the observed molecular weight of moricin is 4544 Da. An in vitro study showed that moricin exposure to MDA-MB-231 cells caused dose dependent inhibition of cell viability with a high generation of reactive oxygen species (ROS). Molecular study revealed that moricin exposure caused downregulation in the expression of Notch-1, NF-ƙB and Bcl2 proteins while upregulating p53, Bax, caspase 3, and caspase 9, which results in caspase-dependent cell death in MDA-MB-231 cells.
CONCLUSIONS: In conclusion, this study reveals the anticancer potential and underlying mechanism of moricin peptide-induced cell death in triple negative cancer cells, which could be used in the development of an anticancer drug.

Keywords

References

  1. J Appl Toxicol. 2019 Feb;39(2):375-384 [PMID: 30294794]
  2. Nature. 2000 Oct 12;407(6805):770-6 [PMID: 11048727]
  3. Phytomedicine. 2009 Oct;16(10):916-22 [PMID: 19524420]
  4. Drug Des Devel Ther. 2015 Mar 02;9:1319-30 [PMID: 25767377]
  5. Front Microbiol. 2019 Oct 11;10:2211 [PMID: 31681182]
  6. Breast. 2022 Dec;66:15-23 [PMID: 36084384]
  7. Apoptosis. 2021 Aug;26(7-8):385-414 [PMID: 34236569]
  8. Sci Rep. 2021 May 14;11(1):10322 [PMID: 33990623]
  9. J Virol. 2003 Jun;77(12):7106-12 [PMID: 12768030]
  10. J Pept Sci. 2008 Jul;14(7):855-63 [PMID: 18265434]
  11. Ann Epidemiol. 2018 Nov;28(11):767-773.e1 [PMID: 30309689]
  12. PLoS One. 2011 Mar 29;6(3):e18109 [PMID: 21479226]
  13. Int J Cancer. 2018 Jun 1;142(11):2293-2302 [PMID: 29349773]
  14. Biol Chem. 2017 Apr 1;398(4):491-498 [PMID: 27811341]
  15. Fish Shellfish Immunol. 2020 Sep;104:55-61 [PMID: 32473358]
  16. Front Immunol. 2020 Sep 02;11:2030 [PMID: 32983149]
  17. Am J Transl Res. 2019 Jul 15;11(7):3919-3931 [PMID: 31396309]
  18. RSC Adv. 2020 Jan 2;10(1):512-523 [PMID: 35492565]
  19. Sci Rep. 2017 Aug 15;7(1):8293 [PMID: 28811617]
  20. Signal Transduct Target Ther. 2022 Mar 24;7(1):95 [PMID: 35332121]
  21. BMC Complement Med Ther. 2022 Mar 15;22(1):68 [PMID: 35291987]
  22. Acta Pharmacol Sin. 2011 Jan;32(1):79-88 [PMID: 21131998]
  23. Toxicol Appl Pharmacol. 2022 Jan 1;434:115819 [PMID: 34896196]
  24. Comput Struct Biotechnol J. 2015 Dec 07;14:49-57 [PMID: 26862373]
  25. Biomed Pharmacother. 2019 Jun;114:108800 [PMID: 30921705]
  26. Microorganisms. 2021 Jan 22;9(2): [PMID: 33499187]
  27. Sci Adv. 2017 Apr 28;3(4):e1602506 [PMID: 28508041]
  28. Open Biol. 2020 Jul;10(7):200004 [PMID: 32692959]
  29. Front Genet. 2022 Apr 27;13:887894 [PMID: 35571059]
  30. FEBS Lett. 2002 May 8;518(1-3):33-8 [PMID: 11997013]
  31. Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695): [PMID: 27160593]
  32. Mol Cancer Ther. 2021 Feb;20(2):296-306 [PMID: 33323457]
  33. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  34. Arch Microbiol. 2022 Jun 8;204(7):375 [PMID: 35674927]
  35. Chem Sci. 2017 Nov 1;8(11):7552-7559 [PMID: 29163910]
  36. Nat Protoc. 2007;2(12):3247-56 [PMID: 18079725]
  37. J Biol Chem. 1995 Dec 15;270(50):29923-7 [PMID: 8530391]
  38. Signal Transduct Target Ther. 2020 Oct 7;5(1):228 [PMID: 33028808]
  39. Radiat Oncol. 2020 Mar 30;15(1):71 [PMID: 32228654]
  40. J Lab Clin Med. 2004 Sep;144(3):156-62 [PMID: 15454885]
  41. Onco Targets Ther. 2014 Jan 23;7:147-64 [PMID: 24482576]
  42. J Food Biochem. 2021 May;45(5):e13720 [PMID: 33856706]
  43. Pharmaceutics. 2022 May 06;14(5): [PMID: 35631583]
  44. Int J Pept Res Ther. 2022;28(1):15 [PMID: 34873397]
  45. Breast Cancer Res. 2011 Oct 24;13(5):R102 [PMID: 22023734]
  46. Cancer. 2020 May 15;126 Suppl 10:2379-2393 [PMID: 32348566]
  47. Anim Cells Syst (Seoul). 2019 Apr 26;23(3):176-183 [PMID: 31231581]
  48. Genes Dis. 2018 May 12;5(2):77-106 [PMID: 30258937]
  49. Eur J Pharmacol. 2015 Oct 15;765:24-33 [PMID: 26276395]
  50. Sci Rep. 2021 Sep 16;11(1):18445 [PMID: 34531430]
  51. Sci Rep. 2017 Apr 19;7:46541 [PMID: 28422156]
  52. J Natl Cancer Inst. 2019 Oct 1;111(10):1051-1058 [PMID: 30794318]
  53. Int J Oncol. 2020 Sep;57(3):678-696 [PMID: 32705178]
  54. BMC Complement Altern Med. 2019 Oct 21;19(1):273 [PMID: 31638975]
  55. Mol Cell Biochem. 2015 Feb;400(1-2):77-86 [PMID: 25380626]
  56. Curr Protoc. 2021 Feb;1(2):e124 [PMID: 33555621]
  57. Cancers (Basel). 2020 Aug 24;12(9): [PMID: 32846967]
  58. J Vis Exp. 2020 May 12;(159): [PMID: 32478759]
  59. J Colloid Interface Sci. 2022 Feb;607(Pt 1):488-501 [PMID: 34509120]

Word Cloud

Created with Highcharts 10.0.0moricincanceranticancercellcellspotentialdeathperformedMDA-MB-231peptideshowedpeptide-inducedMSCDmechanismspredictMoleculardockingbindinginteractionsignalingpathwayrevealedproteinsexposurecausedROSstudycaspasecaspase-dependentnegativebreastBACKGROUND:Breastworld'sprevalentamongwomen Microorganismsrichestsourceantibioticswelldrugs MoricinpeptidesshownantibacterialpropertieshowevermechanisticinsightsyetexploredMETHODS:investigationthrough insilico analysisanalyticalmethodsReversePhase-HighPerformanceLiquidChromatographyRP-HPLCmassspectroscopycirculardichroismand invitro studiescarrieddelineatemoricin-inducedAn in-silico analysisusingAntiCPACPserversbasedsupportvectormachineSVMpeptide-relatedHawkDOCKwebserver invitro anticanceractivityRESULTS:silico observationprotein-proteinstrongpredominanthelicalstructureresultdeterminedobservedmolecularweight4544 Da An invitro studydosedependentinhibitionviabilityhighgenerationreactiveoxygenspeciesdownregulationexpressionNotch-1NF-ƙBBcl2upregulatingp53Bax39resultsCONCLUSIONS:conclusionrevealsunderlyingtripleuseddevelopmentdrugAntimicrobialinducesmediatedapoptosishumantriple-negativeviasuppressionnotchAnticancerApoptosisMoricinNotch1Triple

Similar Articles

Cited By (2)