Generalizable prediction of childhood ADHD symptoms from neurocognitive testing and youth characteristics.

Alexander Weigard, Katherine L McCurry, Zvi Shapiro, Meghan E Martz, Mike Angstadt, Mary M Heitzeg, Ivo D Dinov, Chandra Sripada
Author Information
  1. Alexander Weigard: Department of Psychiatry, University of Michigan, Ann Arbor, USA. asweigar@med.umich.edu. ORCID
  2. Katherine L McCurry: Department of Psychiatry, University of Michigan, Ann Arbor, USA. ORCID
  3. Zvi Shapiro: Department of Psychology, Emory University, Atlanta, USA.
  4. Meghan E Martz: Department of Psychiatry, University of Michigan, Ann Arbor, USA.
  5. Mike Angstadt: Department of Psychiatry, University of Michigan, Ann Arbor, USA.
  6. Mary M Heitzeg: Department of Psychiatry, University of Michigan, Ann Arbor, USA.
  7. Ivo D Dinov: Departments of Computational Medicine and Bioinformatics, and Health Behavior and Biological Sciences, University of Michigan, Ann Arbor, USA. ORCID
  8. Chandra Sripada: Department of Psychiatry, University of Michigan, Ann Arbor, USA. ORCID

Abstract

Childhood attention-deficit/hyperactivity disorder (ADHD) symptoms are believed to result from disrupted neurocognitive development. However, evidence for the clinical and predictive value of neurocognitive assessments in this context has been mixed, and there have been no large-scale efforts to quantify their potential for use in generalizable models that predict individuals' ADHD symptoms in new data. Using data drawn from the Adolescent Brain Cognitive Development Study (ABCD), a consortium that recruited a diverse sample of over 10,000 youth (ages 9-10 at baseline) across 21 U.S. sites, we develop and test cross-validated machine learning models for predicting youths' ADHD symptoms using neurocognitive abilities, demographics, and child and family characteristics. Models used baseline demographic and biometric measures, geocoded neighborhood data, youth reports of child and family characteristics, and neurocognitive tests to predict parent- and teacher-reported ADHD symptoms at the 1-year and 2-year follow-up time points. Predictive models explained 15-20% of the variance in 1-year ADHD symptoms for ABCD Study sites that were left out of the model-fitting process and 12-13% of the variance in 2-year ADHD symptoms. Models displayed high generalizability across study sites and trivial loss of predictive power when transferred from training data to left-out data. Features from multiple domains contributed meaningfully to prediction, including neurocognition, sex, self-reported impulsivity, parental monitoring, and screen time. This work quantifies the information value of neurocognitive abilities and other child characteristics for predicting ADHD symptoms and provides a foundational method for predicting individual youths' symptoms in new data across contexts.

References

  1. Psychol Bull. 2019 May;145(5):508-535 [PMID: 30896187]
  2. J Am Acad Child Adolesc Psychiatry. 2022 Oct;61(10):1273-1284 [PMID: 35427730]
  3. J Child Psychol Psychiatry. 2013 Feb;54(2):131-43 [PMID: 23057693]
  4. Biol Psychiatry Glob Open Sci. 2021 Jun;1(1):5-15 [PMID: 35317408]
  5. J Child Psychol Psychiatry. 2012 May;53(5):469-89 [PMID: 22288576]
  6. Dev Cogn Neurosci. 2021 Dec;52:101021 [PMID: 34700197]
  7. Clin Neuropsychol. 1999 Feb;13(1):12-21 [PMID: 10937644]
  8. J Adolesc Health. 2010 Jan;46(1):52-61 [PMID: 20123258]
  9. Dev Cogn Neurosci. 2018 Aug;32:16-22 [PMID: 29703560]
  10. J Am Acad Child Adolesc Psychiatry. 2004 Oct;43(10):1267-75 [PMID: 15381894]
  11. Dev Cogn Neurosci. 2021 Dec;52:101030 [PMID: 34891080]
  12. Psychol Assess. 2015 Mar;27(1):239-48 [PMID: 25222436]
  13. Psychol Bull. 2021 Feb;147(2):169-231 [PMID: 33370129]
  14. Nat Commun. 2019 May 24;10(1):2319 [PMID: 31127115]
  15. Psychol Assess. 2021 May;33(5):443-451 [PMID: 33719467]
  16. Acta Psychiatr Scand. 2010 Oct;122(4):271-84 [PMID: 20491715]
  17. JAMA Netw Open. 2020 Nov 2;3(11):e2023774 [PMID: 33141160]
  18. Perspect Psychol Sci. 2017 Nov;12(6):1100-1122 [PMID: 28841086]
  19. Dev Neuropsychol. 2011;36(2):137-61 [PMID: 21347918]
  20. J Abnorm Psychol. 2013 Aug;122(3):902-16 [PMID: 24016026]
  21. Biol Psychiatry. 2005 Jun 1;57(11):1224-30 [PMID: 15949992]
  22. Dev Cogn Neurosci. 2021 Jun;49:100966 [PMID: 34044207]
  23. Dev Cogn Neurosci. 2018 Aug;32:43-54 [PMID: 29567376]
  24. J Am Acad Child Adolesc Psychiatry. 1996 Mar;35(3):343-51 [PMID: 8714323]
  25. Nat Commun. 2023 Oct 30;14(1):6922 [PMID: 37903830]
  26. J Atten Disord. 2021 Jan;25(1):105-114 [PMID: 29771172]
  27. Neuropsychology. 2011 Jul;25(4):427-441 [PMID: 21463041]
  28. J Abnorm Psychol. 2012 Nov;121(4):991-1010 [PMID: 22612200]
  29. Biol Psychiatry. 2005 Jun 1;57(11):1336-46 [PMID: 15950006]
  30. Trends Cogn Sci. 2006 Mar;10(3):117-23 [PMID: 16460990]
  31. Psychol Assess. 2019 May;31(5):685-698 [PMID: 30730189]
  32. Neurology. 2013 Mar 12;80(11 Suppl 3):S54-64 [PMID: 23479546]
  33. Eur Child Adolesc Psychiatry. 2015 Jun;24(6):665-73 [PMID: 25395380]
  34. J Consult Clin Psychol. 2020 Feb;88(2):160-171 [PMID: 31789549]
  35. J Atten Disord. 2017 Jan;21(2):137-148 [PMID: 24134875]
  36. Am Psychol. 2001 Feb;56(2):128-65 [PMID: 11279806]
  37. Acta Psychiatr Scand. 2016 Dec;134(6):533-545 [PMID: 27714770]
  38. Neuropsychol Rev. 2012 Mar;22(1):54-68 [PMID: 22081204]
  39. Dev Cogn Neurosci. 2018 Aug;32:55-66 [PMID: 29113758]
  40. Neuroimage. 2019 Jan 15;185:140-153 [PMID: 30339913]
  41. Mol Psychiatry. 2020 Dec;25(12):3413-3421 [PMID: 31427753]
  42. Child Dev. 2021 Sep;92(5):2035-2052 [PMID: 33900639]
  43. Child Neuropsychol. 2000 Jun;6(2):101-14 [PMID: 16210207]
  44. J Atten Disord. 2020 Jun;24(8):1141-1147 [PMID: 28823191]
  45. Pediatr Rev. 2000 Aug;21(8):265-71 [PMID: 10922023]
  46. Arch Clin Neuropsychol. 2010 May;25(3):157-73 [PMID: 20197297]
  47. Psychol Bull. 1959 Mar;56(2):81-105 [PMID: 13634291]
  48. J Abnorm Psychol. 2012 May;121(2):360-71 [PMID: 22428793]
  49. Psychol Bull. 1997 Jan;121(1):65-94 [PMID: 9000892]
  50. Trends Cogn Sci. 2016 Apr;20(4):260-281 [PMID: 26952739]
  51. Pediatrics. 2000 May;105(5):1158-70 [PMID: 10836893]
  52. J Abnorm Psychol. 2011 May;120(2):427-42 [PMID: 20973595]
  53. J Abnorm Child Psychol. 2019 Jan;47(1):21-34 [PMID: 29691720]
  54. J Pers. 2002 Aug;70(4):533-52 [PMID: 12095190]

Grants

  1. U24 DA041147/NIDA NIH HHS
  2. U01 DA041120/NIDA NIH HHS
  3. U01 DA041093/NIDA NIH HHS
  4. U24 DA041123/NIDA NIH HHS
  5. U01 DA051038/NIDA NIH HHS
  6. U01 DA051037/NIDA NIH HHS
  7. U01 DA051016/NIDA NIH HHS
  8. U01 DA041117/NIDA NIH HHS
  9. U01 DA041148/NIDA NIH HHS
  10. T32 GM141746/NIGMS NIH HHS
  11. U01 DA041174/NIDA NIH HHS
  12. U01 DA051039/NIDA NIH HHS
  13. K01 AA027558/NIAAA NIH HHS
  14. U01 DA051018/NIDA NIH HHS
  15. R01 MH126137/NIMH NIH HHS
  16. U01 DA041134/NIDA NIH HHS
  17. U01 DA041022/NIDA NIH HHS
  18. R01 AA025790/NIAAA NIH HHS
  19. K23 DA051561/NIDA NIH HHS
  20. T32 AA007477/NIAAA NIH HHS
  21. U01 DA041156/NIDA NIH HHS
  22. U01 DA050987/NIDA NIH HHS
  23. U01 DA041025/NIDA NIH HHS
  24. U01 DA050989/NIDA NIH HHS
  25. U01 DA041089/NIDA NIH HHS
  26. R01 MH123458/NIMH NIH HHS
  27. U01 DA050988/NIDA NIH HHS
  28. R01 MH121079/NIMH NIH HHS
  29. U01 DA041106/NIDA NIH HHS
  30. U01 DA041028/NIDA NIH HHS
  31. U01 DA041048/NIDA NIH HHS

MeSH Term

Child
Humans
Attention Deficit Disorder with Hyperactivity
Cognition
Impulsive Behavior
Mental Status and Dementia Tests
Parents

Word Cloud

Created with Highcharts 10.0.0symptomsADHDneurocognitivedatacharacteristicsmodelsyouthacrosssitespredictingchildpredictivevaluepredictnewStudyABCDbaselineyouths'abilitiesfamilyModels1-year2-yeartimevariancepredictionChildhoodattention-deficit/hyperactivitydisorderbelievedresultdisrupteddevelopmentHoweverevidenceclinicalassessmentscontextmixedlarge-scaleeffortsquantifypotentialusegeneralizableindividuals'UsingdrawnAdolescentBrainCognitiveDevelopmentconsortiumrecruiteddiversesample10000ages9-1021USdeveloptestcross-validatedmachinelearningusingdemographicsuseddemographicbiometricmeasuresgeocodedneighborhoodreportstestsparent-teacher-reportedfollow-uppointsPredictiveexplained15-20%leftmodel-fittingprocess12-13%displayedhighgeneralizabilitystudytriviallosspowertransferredtrainingleft-outFeaturesmultipledomainscontributedmeaningfullyincludingneurocognitionsexself-reportedimpulsivityparentalmonitoringscreenworkquantifiesinformationprovidesfoundationalmethodindividualcontextsGeneralizablechildhoodtesting

Similar Articles

Cited By