Identification of distinct impacts of CovS inactivation on the transcriptome of acapsular group A streptococci.

Sruti DebRoy, William C Shropshire, Luis Vega, Chau Tran, Nicola Horstmann, Piyali Mukherjee, Selvalakshmi Selvaraj-Anand, Truc T Tran, Jordan Bremer, Marc Gohel, Cesar A Arias, Anthony R Flores, Samuel A Shelburne
Author Information
  1. Sruti DebRoy: Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center , Houston, Texas, USA. ORCID
  2. William C Shropshire: Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center , Houston, Texas, USA. ORCID
  3. Luis Vega: Division of Infectious Diseases and Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children's Memorial Hermann Hospital , Houston, Texas, USA.
  4. Chau Tran: Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center , Houston, Texas, USA.
  5. Nicola Horstmann: Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center , Houston, Texas, USA.
  6. Piyali Mukherjee: Division of Infectious Diseases and Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children's Memorial Hermann Hospital , Houston, Texas, USA.
  7. Selvalakshmi Selvaraj-Anand: School of Health Professions, The University of Texas MD Anderson Cancer Center , Houston, Texas, USA.
  8. Truc T Tran: Center for Infectious Diseases, Houston Methodist Research Institute , Houston, Texas, USA.
  9. Jordan Bremer: Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center , Houston, Texas, USA.
  10. Marc Gohel: Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center , Houston, Texas, USA.
  11. Cesar A Arias: Center for Infectious Diseases, Houston Methodist Research Institute , Houston, Texas, USA. ORCID
  12. Anthony R Flores: Division of Infectious Diseases and Department of Pediatrics, McGovern Medical School at UTHealth Houston and Children's Memorial Hermann Hospital , Houston, Texas, USA. ORCID
  13. Samuel A Shelburne: Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center , Houston, Texas, USA. ORCID

Abstract

Group A streptococcal (GAS) strains causing severe, invasive infections often have mutations in the control of virulence two-component regulatory system (CovRS) which represses capsule production, and high-level capsule production is considered critical to the GAS hypervirulent phenotype. Additionally, based on studies in GAS, hyperencapsulation is thought to limit transmission of CovRS-mutated strains by reducing GAS adherence to mucosal surfaces. It has recently been identified that about 30% of invasive GAS strains lacks capsule, but there are limited data regarding the impact of CovS inactivation in such acapsular strains. Using publicly available complete genomes ( = 2,455) of invasive GAS strains, we identified similar rates of CovRS inactivation and limited evidence for transmission of CovRS-mutated isolates for both encapsulated and acapsular types. Relative to encapsulated GAS, CovS transcriptomes of the prevalent acapsular types , , and revealed unique impacts such as increased transcript levels of genes in the /mga region along with decreased transcript levels of pilus operon-encoding genes and the streptokinase-encoding gene . CovS inactivation in and strains, but not , increased GAS survival in human blood. Moreover, CovS inactivation in acapsular GAS reduced adherence to host epithelial cells. These data suggest that the hypervirulence induced by CovS inactivation in acapsular GAS follows distinct pathways from the better studied encapsulated strains and that factors other than hyperencapsulation may account for the lack of transmission of CovRS-mutated strains. IMPORTANCE Devastating infections due to group A streptococci (GAS) tend to occur sporadically and are often caused by strains that contain mutations in the control of virulence regulatory system (CovRS). In well-studied GAS, the increased production of capsule induced by CovRS mutation is considered key to both hypervirulence and limited transmissibility by interfering with proteins that mediate attachment to eukaryotic cells. Herein, we show that the rates of covRS mutations and genetic clustering of CovRS-mutated isolates are independent of capsule status. Moreover, we found that CovS inactivation in multiple acapsular GAS types results in dramatically altered transcript levels of a diverse array of cell-surface protein-encoding genes and a unique transcriptome relative to encapsulated GAS. These data provide new insights into how a major human pathogen achieves hypervirulence and indicate that factors other than hyperencapsulation likely account for the sporadic nature of the severe GAS disease.

Keywords

References

  1. Mol Gen Genet. 1988 Apr;212(1):66-70 [PMID: 2836707]
  2. J Infect Dis. 2014 Oct 15;210(8):1325-38 [PMID: 24799598]
  3. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  4. Mol Microbiol. 2020 Jan;113(1):190-207 [PMID: 31660653]
  5. PLoS One. 2018 Dec 5;13(12):e0207897 [PMID: 30517150]
  6. PLoS Pathog. 2018 Oct 31;14(10):e1007354 [PMID: 30379939]
  7. Infect Immun. 2015 Mar;83(3):1068-77 [PMID: 25561708]
  8. mBio. 2010 Aug 31;1(4): [PMID: 20827373]
  9. J Pediatric Infect Dis Soc. 2019 Jul 1;8(3):244-250 [PMID: 30085121]
  10. J Bacteriol. 2004 Jan;186(1):110-21 [PMID: 14679231]
  11. J Infect Dis. 2017 Jun 1;215(11):1648-1652 [PMID: 28383686]
  12. Front Microbiol. 2021 Feb 09;12:616508 [PMID: 33633705]
  13. Infect Immun. 1994 Feb;62(2):433-41 [PMID: 8300204]
  14. PLoS One. 2010 Apr 14;5(4):e9798 [PMID: 20418946]
  15. Infect Immun. 2004 Feb;72(2):623-8 [PMID: 14742501]
  16. PLoS Pathog. 2011 Oct;7(10):e1002361 [PMID: 22046138]
  17. BMC Res Notes. 2013 Mar 28;6:126 [PMID: 23537349]
  18. Infect Immun. 2009 Aug;77(8):3141-9 [PMID: 19451242]
  19. Nat Med. 2007 Aug;13(8):981-5 [PMID: 17632528]
  20. Int J Med Microbiol. 2006 Aug;296(4-5):259-75 [PMID: 16531115]
  21. PLoS One. 2013 Apr 25;8(4):e61655 [PMID: 23637876]
  22. PLoS Pathog. 2006 Jan;2(1):e5 [PMID: 16446783]
  23. Elife. 2022 Jun 21;11: [PMID: 35726694]
  24. J Biol Chem. 2011 Jan 28;286(4):2750-61 [PMID: 21084306]
  25. PLoS Pathog. 2022 Feb 18;18(2):e1010341 [PMID: 35180278]
  26. mBio. 2012 Nov 06;3(6):e00413-12 [PMID: 23131832]
  27. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  28. mBio. 2017 Mar 28;8(2): [PMID: 28351920]
  29. Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):5039-44 [PMID: 21383167]
  30. mBio. 2015 Dec 01;6(6):e01780-15 [PMID: 26628724]
  31. Infect Immun. 2000 Feb;68(2):535-42 [PMID: 10639414]
  32. Microbes Infect. 2018 Jan;20(1):9-18 [PMID: 28951316]
  33. mBio. 2015 Oct 06;6(5):e01378-15 [PMID: 26443457]
  34. J Bacteriol. 2019 Jan 28;201(4): [PMID: 30478086]
  35. Infect Immun. 2018 Oct 25;86(11): [PMID: 30126898]
  36. Sci Rep. 2016 Sep 01;6:32442 [PMID: 27580596]
  37. Nat Genet. 2019 Mar;51(3):548-559 [PMID: 30778225]
  38. J Innate Immun. 2010;2(6):596-606 [PMID: 20814186]
  39. Mol Microbiol. 2017 Feb;103(4):576-589 [PMID: 27868255]
  40. Mol Microbiol. 2021 Jun;115(6):1207-1228 [PMID: 33325565]
  41. mSystems. 2021 Aug 31;6(4):e0049521 [PMID: 34374563]
  42. Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259 [PMID: 30931475]
  43. Infect Immun. 2015 Mar;83(3):1122-9 [PMID: 25561712]
  44. Infect Immun. 2020 Mar 23;88(4): [PMID: 32014891]
  45. FASEB J. 2006 Aug;20(10):1745-7 [PMID: 16790522]
  46. mBio. 2015 Jul 14;6(4):e00622 [PMID: 26173696]
  47. J Infect Dis. 2010 Mar 15;201(6):855-65 [PMID: 20151844]
  48. mSphere. 2020 May 20;5(3): [PMID: 32434842]
  49. mBio. 2020 Sep 15;11(5): [PMID: 32934083]
  50. mBio. 2021 Aug 31;12(4):e0164221 [PMID: 34253064]
  51. Microb Pathog. 2022 Aug;169:105636 [PMID: 35724830]
  52. Mol Microbiol. 2007 Aug;65(3):671-83 [PMID: 17608796]
  53. mBio. 2018 Jan 30;9(1): [PMID: 29382733]
  54. Front Microbiol. 2020 Jul 24;11:1547 [PMID: 32849323]
  55. Sci Rep. 2016 Jun 28;6:28761 [PMID: 27349341]
  56. Cell Host Microbe. 2008 Aug 14;4(2):170-8 [PMID: 18692776]
  57. J Infect Dis. 2005 Sep 1;192(5):760-70 [PMID: 16088825]
  58. Structure. 2006 Feb;14(2):225-35 [PMID: 16472742]
  59. PLoS Genet. 2021 Sep 7;17(9):e1009761 [PMID: 34491998]
  60. Mol Biol Evol. 2020 May 1;37(5):1530-1534 [PMID: 32011700]
  61. Infect Immun. 2021 Jul 15;89(8):e0072220 [PMID: 33820819]
  62. Infect Immun. 2000 Nov;68(11):6370-7 [PMID: 11035747]
  63. Infect Immun. 2021 Oct 15;89(11):e0021521 [PMID: 34370508]
  64. Infect Immun. 2018 Jan 22;86(2): [PMID: 29158432]
  65. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  66. J Exp Med. 1959 Oct 1;110:617-28 [PMID: 13823728]
  67. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12238-42 [PMID: 7991612]
  68. Sci Rep. 2017 Aug 17;7(1):8554 [PMID: 28819111]
  69. Mol Microbiol. 2006 Oct;62(2):491-508 [PMID: 16965517]
  70. Infect Immun. 2015 Nov;83(11):4237-46 [PMID: 26283331]
  71. J Mol Med (Berl). 2010 Apr;88(4):371-81 [PMID: 19960175]
  72. BMC Microbiol. 2010 Feb 01;10:34 [PMID: 20113532]
  73. J Infect Dis. 2022 Aug 26;226(3):546-553 [PMID: 35511035]
  74. Am J Pathol. 2019 Oct;189(10):2002-2018 [PMID: 31369755]
  75. mBio. 2019 Dec 10;10(6): [PMID: 31822586]
  76. J Infect Dis. 2022 May 16;225(10):1841-1851 [PMID: 34788828]
  77. J Infect Dis. 2010 Jul 1;202(1):11-9 [PMID: 20507231]
  78. J Biol Chem. 2012 Dec 7;287(50):42093-103 [PMID: 23086939]
  79. mSphere. 2021 Dec 22;6(6):e0079921 [PMID: 34787444]
  80. Case Rep Infect Dis. 2019 Jan 21;2019:6568732 [PMID: 30805230]
  81. J Biol Chem. 2014 Dec 26;289(52):36315-24 [PMID: 25378408]
  82. PLoS Pathog. 2014 May 01;10(5):e1004088 [PMID: 24788524]
  83. J Biol Chem. 2014 Nov 14;289(46):32303-32315 [PMID: 25266727]
  84. Microb Pathog. 2006 May;40(5):221-7 [PMID: 16542816]
  85. Infect Immun. 2015 Aug;83(8):3035-42 [PMID: 25987706]
  86. Lancet Infect Dis. 2005 Nov;5(11):685-94 [PMID: 16253886]
  87. Nucleic Acids Res. 2015 Feb 18;43(3):e15 [PMID: 25414349]
  88. Microbiology (Reading). 2009 Feb;155(Pt 2):566-575 [PMID: 19202105]
  89. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8317-21 [PMID: 1656437]

Grants

  1. R21 AI156202/NIAID NIH HHS
  2. R21 AI151536/NIAID NIH HHS
  3. R01 AI125292/NIAID NIH HHS
  4. P01 AI152999/NIAID NIH HHS
  5. P30 CA016672/NCI NIH HHS

MeSH Term

Humans
Transcriptome
Bacterial Proteins
Virulence
Mutation
Phenotype
Streptococcus pyogenes

Chemicals

Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0GASstrainsacapsularCovSinactivationCovRScapsuleCovRS-mutatedencapsulatedinvasivemutationsproductionhyperencapsulationtransmissionlimiteddatatypesincreasedtranscriptlevelsgeneshypervirulencesevereinfectionsoftencontrolvirulenceregulatorysystemconsideredadherenceidentifiedratesisolatesuniqueimpactshumanMoreovercellsinduceddistinctfactorsaccountgroupstreptococcitranscriptomeGroupstreptococcalcausingtwo-componentrepresseshigh-levelcriticalhypervirulentphenotypeAdditionallybasedstudiesthoughtlimitreducingmucosalsurfacesrecently30%lacksregardingimpactUsingpubliclyavailablecompletegenomes=2455similarevidenceRelativetranscriptomesprevalentrevealed/mgaregionalongdecreasedpilusoperon-encodingstreptokinase-encodinggenesurvivalbloodreducedhostepithelialsuggestfollowspathwaysbetterstudiedmaylackIMPORTANCEDevastatingduetendoccursporadicallycausedcontainwell-studiedmutationkeytransmissibilityinterferingproteinsmediateattachmenteukaryoticHereinshowcovRSgeneticclusteringindependentstatusfoundmultipleresultsdramaticallyaltereddiversearraycell-surfaceprotein-encodingrelativeprovidenewinsightsmajorpathogenachievesindicatelikelysporadicnaturediseaseIdentificationStreptococcus

Similar Articles

Cited By