Lipids as a key element of insect defense systems.

Anna Katarzyna Wrońska, Agata Kaczmarek, Mieczysława Irena Boguś, Anna Kuna
Author Information
  1. Anna Katarzyna Wrońska: Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland.
  2. Agata Kaczmarek: Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland.
  3. Mieczysława Irena Boguś: Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland.
  4. Anna Kuna: Independent Researcher, Warsaw, Poland.

Abstract

The relationship between insect pathogenic fungi and their insect hosts is a classic example of a co-evolutionary arms race between pathogen and target host: parasites evolve towards mechanisms that increase their advantage over the host, and the host increasingly strengthens its defenses. The present review summarizes the literature data describing the direct and indirect role of lipids as an important defense mechanism during fungal infection. Insect defense mechanisms comprise anatomical and physiological barriers, and cellular and humoral response mechanisms. The entomopathogenic fungi have the unique ability to digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry within the host. The key factor in insect resistance to fungal infection is the presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which can promote or inhibit fungal attachment to cuticle, and might also have antifungal activity. Lipids are considered as an important source of energy, and as triglycerides are stored in the fat body, a structure analogous to the liver and adipose tissue in vertebrates. In addition, the fat body plays a key role in innate humoral immunity by producing a range of bactericidal proteins and polypeptides, one of which is lysozyme. Energy derived from lipid metabolism is used by hemocytes to migrate to the site of fungal infection, and for phagocytosis, nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic acid, is used in the synthesis of eicosanoids, which play several crucial roles in insect physiology and immunology. Apolipoprotein III is important compound with antifungal activity, which can modulate insect cellular response and is considered as important signal molecule.

Keywords

References

  1. PLoS One. 2010 Nov 02;5(11):e15410 [PMID: 21072214]
  2. J Biol Chem. 2004 Nov 5;279(45):46835-42 [PMID: 15337753]
  3. Mol Immunol. 2019 Feb;106:69-76 [PMID: 30590209]
  4. FEBS Lett. 1997 Dec 8;419(1):83-6 [PMID: 9426224]
  5. Sci Rep. 2022 May 6;12(1):7464 [PMID: 35523841]
  6. Microbiol Res. 2014 Apr;169(4):279-86 [PMID: 23969191]
  7. Genesis. 2009 Dec;47(12):847-57 [PMID: 19882668]
  8. Adv Genet. 2016;94:307-64 [PMID: 27131329]
  9. Immunity. 2020 Feb 18;52(2):374-387.e6 [PMID: 32075729]
  10. J Invertebr Pathol. 2022 Feb;188:107707 [PMID: 34952100]
  11. Insects. 2021 Jun 11;12(6): [PMID: 34208190]
  12. Sci Rep. 2018 Oct 18;8(1):15359 [PMID: 30337550]
  13. J Insect Physiol. 1997 Apr;43(4):383-391 [PMID: 12769900]
  14. Comp Biochem Physiol B Biochem Mol Biol. 1995 Apr;110(4):661-9 [PMID: 7749618]
  15. Science. 2020 May 1;368(6490): [PMID: 32355003]
  16. Arch Insect Biochem Physiol. 2000 Jun;44(2):49-68 [PMID: 10861866]
  17. Med Vet Entomol. 2017 Mar;31(1):23-35 [PMID: 27770452]
  18. Cell. 2006 Dec 29;127(7):1425-37 [PMID: 17190605]
  19. PLoS One. 2020 Jul 9;15(7):e0235785 [PMID: 32645074]
  20. J Invertebr Pathol. 2012 Jul;110(3):382-8 [PMID: 22569137]
  21. Development. 2020 Dec 21;147(24): [PMID: 33355243]
  22. EMBO J. 2002 Jun 3;21(11):2568-79 [PMID: 12032070]
  23. PeerJ. 2019 Aug 2;7:e7428 [PMID: 31396456]
  24. Bull Entomol Res. 2017 Feb;107(1):66-76 [PMID: 27444104]
  25. J Biol Chem. 2004 May 14;279(20):21121-7 [PMID: 14985331]
  26. Bull Entomol Res. 2021 Oct 08;:1-10 [PMID: 34622750]
  27. Mol Biol Cell. 2012 Dec;23(23):4567-78 [PMID: 23051736]
  28. Int J Mol Sci. 2020 Apr 01;21(7): [PMID: 32244587]
  29. Immunity. 2000 May;12(5):569-80 [PMID: 10843389]
  30. Arch Insect Biochem Physiol. 2020 Jun;104(2):e21682 [PMID: 32335968]
  31. Dev Comp Immunol. 2019 Jun;95:50-58 [PMID: 30735676]
  32. Insect Biochem Mol Biol. 2021 Jun;133:103585 [PMID: 33915290]
  33. Folia Microbiol (Praha). 2023 Apr;68(2):181-196 [PMID: 36417090]
  34. Results Immunol. 2012 Feb 25;2:54-65 [PMID: 24371567]
  35. Oxid Med Cell Longev. 2019 Jun 18;2019:8107265 [PMID: 31316721]
  36. FEBS Lett. 2005 Sep 26;579(23):5157-62 [PMID: 16146629]
  37. Dev Comp Immunol. 2015 Jan;48(1):244-53 [PMID: 25281274]
  38. Sci Rep. 2020 Oct 15;10(1):17337 [PMID: 33060748]
  39. Results Probl Cell Differ. 2017;63:403-434 [PMID: 28779328]
  40. Biochem Biophys Res Commun. 2004 May 14;317(4):1052-60 [PMID: 15094375]
  41. J Insect Physiol. 2005 May;51(5):575-86 [PMID: 15894004]
  42. Dev Comp Immunol. 2020 Oct;111:103757 [PMID: 32485180]
  43. Science. 1964 Oct 23;146(3643):504-6 [PMID: 17806799]
  44. Dev Comp Immunol. 2021 Dec;125:104230 [PMID: 34388674]
  45. J Invertebr Pathol. 2000 Nov;76(4):233-41 [PMID: 11112367]
  46. Dev Comp Immunol. 2017 Dec;77:221-228 [PMID: 28830681]
  47. PLoS Genet. 2021 Nov 29;17(11):e1009916 [PMID: 34843450]
  48. Insect Mol Biol. 2021 Feb;30(1):102-112 [PMID: 33150694]
  49. Elife. 2012 Nov 13;1:e00003 [PMID: 23150794]
  50. J Insect Physiol. 2002 Jul;48(7):715-723 [PMID: 12770066]
  51. Int J Mol Sci. 2020 Mar 11;21(6): [PMID: 32168818]
  52. Arch Insect Biochem Physiol. 2002 Sep;51(1):46-54 [PMID: 12210960]
  53. J Biol Chem. 2006 Mar 31;281(13):8426-35 [PMID: 16449228]
  54. J Biol Chem. 2006 Dec 22;281(51):39388-95 [PMID: 17068331]
  55. Fungal Biol. 2018 Jun;122(6):538-545 [PMID: 29801798]
  56. Free Radic Biol Med. 2021 Aug 1;171:191-202 [PMID: 34000382]
  57. J Insect Physiol. 2013 Apr;59(4):416-29 [PMID: 23419415]
  58. Dev Comp Immunol. 2007;31(4):347-59 [PMID: 16920193]
  59. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14614-9 [PMID: 9405661]
  60. Dev Comp Immunol. 2006;30(9):735-40 [PMID: 16336999]
  61. Comp Biochem Physiol B Biochem Mol Biol. 2015 Apr;182:6-13 [PMID: 25483322]
  62. Antioxidants (Basel). 2022 Jul 23;11(8): [PMID: 35892633]
  63. Infect Immun. 2005 Jul;73(7):4161-70 [PMID: 15972506]
  64. Arch Insect Biochem Physiol. 2020 Jan;103(1):e21622 [PMID: 31583765]
  65. Sci Rep. 2022 Aug 10;12(1):13641 [PMID: 35948615]
  66. Pathog Dis. 2020 Dec 9;78(9): [PMID: 33232457]
  67. J Insect Physiol. 2016 Oct - Nov;93-94:94-104 [PMID: 27662806]
  68. Development. 2019 Nov 12;146(21): [PMID: 31719046]
  69. Insect Biochem Mol Biol. 2018 Oct;101:108-123 [PMID: 30171905]
  70. Microbiol Res. 2015 Jan;170:213-22 [PMID: 25026883]
  71. Elife. 2021 Jun 21;10: [PMID: 34151772]
  72. Nature. 1980 Oct 30;287(5785):795-801 [PMID: 6776413]
  73. PLoS Genet. 2022 Mar 4;18(3):e1010098 [PMID: 35245295]
  74. PLoS One. 2018 Oct 3;13(10):e0204828 [PMID: 30281642]
  75. Biol Open. 2019 Jul 19;8(7): [PMID: 31278163]
  76. Eukaryot Cell. 2004 Apr;3(2):413-9 [PMID: 15075271]
  77. J Insect Physiol. 2012 Sep;58(9):1265-76 [PMID: 22781366]
  78. Proc Biol Sci. 2016 May 11;283(1830): [PMID: 27170708]
  79. Elife. 2020 May 12;9: [PMID: 32396065]
  80. Dev Comp Immunol. 2020 May;106:103636 [PMID: 32014469]
  81. Sci Rep. 2021 Jan 14;11(1):1299 [PMID: 33446848]
  82. Nat Rev Mol Cell Biol. 2019 Mar;20(3):137-155 [PMID: 30523332]
  83. J Invertebr Pathol. 2021 Sep;184:107647 [PMID: 34303711]
  84. Nat Immunol. 2002 Jan;3(1):91-7 [PMID: 11743586]
  85. Front Immunol. 2020 Jan 31;11:63 [PMID: 32082322]
  86. J Immunol. 2021 Nov 1;207(9):2347-2358 [PMID: 34588219]
  87. Prog Lipid Res. 2020 Apr;78:101029 [PMID: 32348789]
  88. Exp Parasitol. 2010 Aug;125(4):400-8 [PMID: 20385129]
  89. Curr Opin Insect Sci. 2018 Jun;27:68-74 [PMID: 30025637]
  90. Int J Mol Sci. 2018 Dec 14;19(12): [PMID: 30558204]
  91. Parasitology. 2013 Jul;140(8):972-85 [PMID: 23561808]
  92. Mycopathologia. 2004 Aug;158(2):211-7 [PMID: 15518350]
  93. Toxins (Basel). 2018 Nov 08;10(11): [PMID: 30413046]
  94. Environ Microbiol. 2021 Sep;23(9):5087-5101 [PMID: 33734541]
  95. Insects. 2020 Sep 01;11(9): [PMID: 32882853]
  96. Sci Rep. 2021 Aug 5;11(1):15963 [PMID: 34354188]
  97. Fungal Biol Rev. 2013 Jan;26(4):132-145 [PMID: 23412850]
  98. J Exp Biol. 2008 Feb;211(Pt 4):531-8 [PMID: 18245629]
  99. Insect Biochem Mol Biol. 2003 Jul;33(7):661-70 [PMID: 12826093]
  100. Subcell Biochem. 2020;94:123-161 [PMID: 32189298]
  101. Insect Biochem Mol Biol. 2019 Aug;111:103179 [PMID: 31255640]
  102. PLoS One. 2016 May 26;11(5):e0155257 [PMID: 27227835]
  103. Annu Rev Entomol. 2000;45:233-60 [PMID: 10761577]
  104. Annu Rev Entomol. 2006;51:25-44 [PMID: 16332202]
  105. Dev Comp Immunol. 2020 Sep;110:103732 [PMID: 32423863]
  106. Sci Rep. 2016 Feb 18;6:19928 [PMID: 26887863]
  107. Cell Signal. 2021 Jul;83:110003 [PMID: 33836260]
  108. J Insect Physiol. 2016 May;88:33-9 [PMID: 26940771]
  109. Brain Behav Immun. 2007 Mar;21(3):292-300 [PMID: 17126528]
  110. Biosci Biotechnol Biochem. 2014;78(8):1283-92 [PMID: 25130728]
  111. Pestic Biochem Physiol. 2016 Feb;127:28-37 [PMID: 26821655]
  112. Adv Genet. 2016;94:251-85 [PMID: 27131327]
  113. J R Soc Interface. 2017 Jul;14(132): [PMID: 28724628]
  114. Lipids. 2012 Jun;47(6):613-22 [PMID: 22415221]
  115. Cell Tissue Res. 2017 Oct;370(1):153-168 [PMID: 28687931]
  116. Insect Biochem Mol Biol. 2019 Jun;109:31-42 [PMID: 30959109]
  117. Dev Comp Immunol. 2020 Jul;108:103688 [PMID: 32222357]
  118. Int J Mol Sci. 2022 May 06;23(9): [PMID: 35563592]
  119. Gene. 2016 Dec 20;595(1):69-76 [PMID: 27693371]
  120. Cell Immunol. 2012 Oct;279(2):117-23 [PMID: 23220607]
  121. BMC Microbiol. 2021 Jun 14;21(1):180 [PMID: 34126929]
  122. Cell Tissue Res. 2001 Dec;306(3):449-58 [PMID: 11735046]
  123. J Invertebr Pathol. 1997 Jan;69(1):31-9 [PMID: 9028925]
  124. Pest Manag Sci. 2020 Sep;76(9):3149-3158 [PMID: 32310328]
  125. BMC Biol. 2018 May 31;16(1):60 [PMID: 29855367]
  126. Toxicon. 2011 Sep 15;58(4):369-79 [PMID: 21798278]
  127. Dev Comp Immunol. 2016 May;58:102-18 [PMID: 26695127]
  128. J Immunol. 2008 Aug 15;181(4):2705-12 [PMID: 18684961]
  129. J Immunol. 2004 May 1;172(9):5622-8 [PMID: 15100306]
  130. J Lipid Res. 2012 Aug;53(8):1430-6 [PMID: 22566574]
  131. Dev Comp Immunol. 2011 Jan;35(1):44-50 [PMID: 20708028]
  132. Tissue Cell. 1977;9(1):73-85 [PMID: 408940]
  133. Curr Opin Insect Sci. 2017 Feb;19:30-35 [PMID: 28521940]
  134. J Vis Exp. 2019 Dec 28;(154): [PMID: 31929508]
  135. Biochim Biophys Acta. 1999 Aug 17;1433(1-2):16-26 [PMID: 10446356]
  136. Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):5994-5999 [PMID: 28533370]
  137. Cell. 2013 Oct 10;155(2):435-47 [PMID: 24075010]
  138. Parasit Vectors. 2022 Jul 29;15(1):269 [PMID: 35906633]
  139. Immunobiology. 2006;211(4):213-36 [PMID: 16697916]
  140. Anal Bioanal Chem. 2011 Mar;399(9):3177-91 [PMID: 21153591]
  141. Insect Biochem Mol Biol. 2008 Jun;38(6):619-27 [PMID: 18510973]
  142. J Exp Biol. 2012 Oct 1;215(Pt 19):3419-28 [PMID: 22693023]
  143. Virulence. 2013 Oct 1;4(7):597-603 [PMID: 23921374]
  144. J Insect Physiol. 2008 Dec;54(12):1528-37 [PMID: 18835273]
  145. Insect Biochem Mol Biol. 2008 Jan;38(1):99-112 [PMID: 18070669]
  146. Annu Rev Entomol. 2010;55:207-25 [PMID: 19725772]
  147. Genes (Basel). 2021 Feb 01;12(2): [PMID: 33535438]
  148. Chem Phys Lipids. 2020 Jul;229:104909 [PMID: 32209325]
  149. J Appl Microbiol. 2014 Feb;116(2):269-87 [PMID: 24238211]
  150. Naturwissenschaften. 2020 Jan 3;107(1):7 [PMID: 31900598]
  151. J Histochem Cytochem. 2011 May;59(5):540-56 [PMID: 21430261]
  152. Sci Rep. 2020 Nov 19;10(1):20183 [PMID: 33214688]
  153. Gene. 2016 May 25;583(1):29-35 [PMID: 26945628]
  154. Int J Biol Macromol. 2021 Nov 30;191:396-404 [PMID: 34547317]
  155. Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8950-8959 [PMID: 30988178]
  156. Cell. 1996 Sep 20;86(6):973-83 [PMID: 8808632]
  157. J Invertebr Pathol. 2016 Sep;139:19-24 [PMID: 27345377]
  158. PLoS Pathog. 2013;9(6):e1003459 [PMID: 23825950]
  159. J Insect Physiol. 2009 Jun;55(6):525-31 [PMID: 19232408]
  160. Virulence. 2018;9(1):1625-1639 [PMID: 30257608]
  161. Molecules. 2022 Feb 22;27(5): [PMID: 35268586]
  162. Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11365-70 [PMID: 26305932]
  163. PLoS Biol. 2010 Jul 20;8(7):e1000434 [PMID: 20652016]
  164. Mol Biol Evol. 2018 Jul 1;35(7):1576-1587 [PMID: 29590394]
  165. PLoS One. 2018 Mar 8;13(3):e0192715 [PMID: 29518079]
  166. J Biol Chem. 2013 Aug 30;288(35):25542-25550 [PMID: 23873929]
  167. J Insect Physiol. 2018 Feb - Mar;105:18-27 [PMID: 29289504]
  168. Curr Opin Insect Sci. 2019 Jun;33:105-110 [PMID: 31358188]
  169. Comp Biochem Physiol C Toxicol Pharmacol. 2007 Jul-Aug;146(1-2):124-137 [PMID: 17052960]
  170. Biomol Concepts. 2010 Aug 1;1(2):165-83 [PMID: 25961995]
  171. Arch Insect Biochem Physiol. 1994;25(3):177-91 [PMID: 8167361]
  172. J Innate Immun. 2016;8(3):314-26 [PMID: 26950600]
  173. Dev Comp Immunol. 2010 Oct;34(10):1129-36 [PMID: 20558200]
  174. BMC Genomics. 2015 Oct 26;16:867 [PMID: 26503342]
  175. Biochim Biophys Acta. 2013 Jun;1828(6):1449-56 [PMID: 23419829]
  176. Acta Parasitol. 2017 Dec 20;62(4):717-727 [PMID: 29035870]
  177. J Insect Physiol. 2007 Sep;53(9):909-22 [PMID: 17512001]
  178. J Invertebr Pathol. 2002 Feb;79(2):93-101 [PMID: 12095238]
  179. Arch Insect Biochem Physiol. 2020 Sep;105(1):e21723 [PMID: 32623787]
  180. Pestic Biochem Physiol. 2018 Jul;149:54-60 [PMID: 30033016]
  181. Curr Biol. 2012 Nov 20;22(22):2104-13 [PMID: 23084995]
  182. J Insect Physiol. 2009 Feb;55(2):150-7 [PMID: 19059412]
  183. Cell Signal. 2009 Feb;21(2):186-95 [PMID: 18790716]
  184. Sci Rep. 2020 Jul 23;10(1):12312 [PMID: 32704134]
  185. Front Physiol. 2022 Jan 06;12:774086 [PMID: 35069239]
  186. J Biol Chem. 2011 Nov 11;286(45):39360-9 [PMID: 21937431]
  187. Elife. 2020 Jun 12;9: [PMID: 32530419]
  188. Cell Microbiol. 2008 May;10(5):1021-6 [PMID: 18241211]
  189. F1000Res. 2020 Dec 3;9:1392 [PMID: 33520196]
  190. PLoS Genet. 2020 Nov 23;16(11):e1009192 [PMID: 33227003]
  191. Virulence. 2011 Sep-Oct;2(5):413-21 [PMID: 21921688]
  192. Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):E5373-82 [PMID: 25427801]
  193. Arch Insect Biochem Physiol. 2012 Jun;80(1):1-14 [PMID: 22128070]
  194. J Immunol. 2004 Feb 15;172(4):2177-85 [PMID: 14764684]
  195. J Cell Sci. 2020 Oct 12;133(19): [PMID: 32917740]
  196. Nat Prod Res. 2021 May;35(10):1702-1705 [PMID: 31180246]
  197. PLoS One. 2020 Feb 3;15(2):e0228407 [PMID: 32012188]
  198. Biochemistry. 2001 Sep 25;40(38):11502-8 [PMID: 11560498]
  199. Front Immunol. 2021 Dec 20;12:791319 [PMID: 34987515]
  200. Immunity. 2018 Aug 21;49(2):225-234.e4 [PMID: 30119996]
  201. Front Physiol. 2020 Jul 08;11:790 [PMID: 32733279]
  202. Immunology. 2021 Nov;164(3):401-432 [PMID: 34233014]

Word Cloud

Created with Highcharts 10.0.0insectfungalmechanismsimportantdefenseinfectioncuticlehostactivitykeyacidfungirolelipidscellularhumoralresponseproducingfattycanantifungalLipidsconsideredfatbodylipidusedrelationshippathogenichostsclassicexampleco-evolutionaryarmsracepathogentargethost:parasitesevolvetowardsincreaseadvantageincreasinglystrengthensdefensespresentreviewsummarizesliteraturedatadescribingdirectindirectmechanismInsectcompriseanatomicalphysiologicalbarriersentomopathogenicuniqueabilitydigesthydrolyticenzymeschitin-lipo-proteolyticbesidesoraltractpayswayentrywithinfactorresistancepresencecertaintypesfreeacidswaxeshydrocarbonspromoteinhibitattachmentmightalsosourceenergytriglyceridesstoredstructureanalogousliveradiposetissuevertebratesadditionplaysinnateimmunityrangebactericidalproteinspolypeptidesonelysozymeEnergyderivedmetabolismhemocytesmigratesitephagocytosisnodulationencapsulationOnepolyunsaturatedarachidonicsynthesiseicosanoidsplayseveralcrucialrolesphysiologyimmunologyApolipoproteinIIIcompoundmodulatesignalmoleculeelementsystemsarachiadonicmetaboliteshemocyte

Similar Articles

Cited By