Integrated multi-omics analyses reveal the altered transcriptomic characteristics of pulmonary macrophages in immunocompromised hosts with .

Yawen Wang, Kang Li, Weichao Zhao, Yalan Liu, Ting Li, Hu-Qin Yang, Zhaohui Tong, Nan Song
Author Information
  1. Yawen Wang: Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
  2. Kang Li: Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
  3. Weichao Zhao: Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
  4. Yalan Liu: Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
  5. Ting Li: Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
  6. Hu-Qin Yang: Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
  7. Zhaohui Tong: Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
  8. Nan Song: Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.

Abstract

Introduction: With the extensive use of immunosuppressants, immunosuppression-associated pneumonitis including (PCP) has received increasing attention. Though aberrant adaptive immunity has been considered as a key reason for opportunistic infections, the characteristics of innate immunity in these immunocompromised hosts remain unclear.
Methods: In this study, wild type C57BL/6 mice or dexamethasone-treated mice were injected with or without . Bronchoalveolar lavage fluids (BALFs) were harvested for the multiplex cytokine and metabolomics analysis. The single-cell RNA sequencing (scRNA-seq) of indicated lung tissues or BALFs was performed to decipher the macrophages heterogeneity. Mice lung tissues were further analyzed via quantitative polymerase chain reaction (qPCR) or immunohistochemical staining.
Results: We found that the secretion of both pro-inflammatory cytokines and metabolites in the -infected mice are impaired by glucocorticoids. By scRNA-seq, we identified seven subpopulations of macrophages in mice lung tissues. Among them, a group of Mmp12 macrophages is enriched in the immunocompetent mice with infection. Pseudotime trajectory showed that these Mmp12 macrophages are differentiated from Ly6c classical monocytes, and highly express pro-inflammatory cytokines elevated in BALFs of -infected mice. , we confirmed that dexamethasone impairs the expression of , , and , as well as the fungal killing capacity of alveolar macrophage (AM)-like cells. Moreover, in patients with PCP, we found a group of macrophages resembled the aforementioned Mmp12 macrophages, and these macrophages are inhibited in the patient receiving glucocorticoid treatment. Additionally, dexamethasone simultaneously impaired the functional integrity of resident AMs and downregulated the level of lysophosphatidylcholine, leading to the suppressed antifungal capacities.
Conclusion: We reported a group of Mmp12 macrophages conferring protection during infection, which can be dampened by glucocorticoids. This study provides multiple resources for understanding the heterogeneity and metabolic changes of innate immunity in immunocompromised hosts, and also suggests that the loss of Mmp12 macrophages population contributes to the pathogenesis of immunosuppression-associated pneumonitis.

Keywords

References

  1. Nat Immunol. 2020 Feb;21(2):145-157 [PMID: 31932810]
  2. Nat Immunol. 2019 Feb;20(2):163-172 [PMID: 30643263]
  3. Am J Physiol Lung Cell Mol Physiol. 2009 Jun;296(6):L936-46 [PMID: 19304907]
  4. Cell Rep. 2017 Mar 28;18(13):3078-3090 [PMID: 28355561]
  5. J Exp Med. 2013 Sep 23;210(10):1977-92 [PMID: 24043763]
  6. Nat Commun. 2021 Mar 10;12(1):1565 [PMID: 33692365]
  7. Cancer Res. 2021 Feb 15;81(4):968-985 [PMID: 33361391]
  8. Am J Physiol Lung Cell Mol Physiol. 2019 Jan 1;316(1):L291-L301 [PMID: 30284926]
  9. Front Med (Lausanne). 2021 Sep 07;8:709404 [PMID: 34557501]
  10. Immunity. 2017 Sep 19;47(3):582-596.e6 [PMID: 28930664]
  11. Nat Rev Immunol. 2017 Apr;17(4):233-247 [PMID: 28192415]
  12. Mediators Inflamm. 2019 Sep 10;2019:6750861 [PMID: 31582901]
  13. Br J Pharmacol. 2005 May;145(1):123-31 [PMID: 15735656]
  14. J Crohns Colitis. 2021 Oct 7;15(10):1751-1765 [PMID: 33836047]
  15. Chest. 2013 Jul;144(1):258-265 [PMID: 23258406]
  16. J Fungi (Basel). 2021 Jul 31;7(8): [PMID: 34436164]
  17. Arterioscler Thromb Vasc Biol. 2013 Jun;33(6):1171-9 [PMID: 23580142]
  18. Front Immunol. 2020 May 12;11:779 [PMID: 32477331]
  19. J Immunol. 2000 Mar 1;164(5):2602-9 [PMID: 10679099]
  20. Proc Natl Acad Sci U S A. 2022 Jan 25;119(4): [PMID: 35046017]
  21. Nat Methods. 2017 Oct;14(10):979-982 [PMID: 28825705]
  22. Respiration. 2018;96(1):52-65 [PMID: 29635251]
  23. Eur Respir J. 2010 Jul;36(1):178-86 [PMID: 19926732]
  24. Semin Immunol. 2021 Apr;54:101523 [PMID: 34776300]
  25. Nat Rev Immunol. 2008 Dec;8(12):958-69 [PMID: 19029990]
  26. Pathogens. 2019 Apr 19;8(2): [PMID: 31010170]
  27. Front Microbiol. 2021 Apr 20;12:637500 [PMID: 33959105]
  28. Eur Respir J. 2001 Jun;17(6):1070-7 [PMID: 11491146]
  29. Cytokine. 2002 Jul 7;19(1):14-20 [PMID: 12200108]
  30. Chest. 2005 Aug;128(2):573-9 [PMID: 16100140]
  31. J Biol Chem. 1993 Nov 15;268(32):23824-9 [PMID: 8226919]
  32. Infect Immun. 2017 Jun 20;85(7): [PMID: 28438973]
  33. Mol Metab. 2022 Mar;57:101424 [PMID: 34954109]
  34. J Immunother. 2007 Jan;30(1):54-63 [PMID: 17198083]
  35. J Immunol. 2019 May 1;202(9):2700-2709 [PMID: 30867240]
  36. Br J Pharmacol. 1997 Feb;120(4):545-6 [PMID: 9051287]
  37. Nat Rev Rheumatol. 2020 Mar;16(3):133-144 [PMID: 32034322]
  38. Cell. 2022 Nov 10;185(23):4259-4279 [PMID: 36368305]
  39. J Infect Dis. 2003 Feb 15;187(4):705-9 [PMID: 12599092]
  40. J Immunol. 2003 Jul 15;171(2):938-47 [PMID: 12847265]
  41. Arterioscler Thromb Vasc Biol. 2020 Jun;40(6):1491-1509 [PMID: 32295421]
  42. Infect Immun. 2015 Dec;83(12):4791-9 [PMID: 26438797]
  43. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  44. N Engl J Med. 1990 Jan 18;322(3):161-5 [PMID: 1967190]
  45. Immunol Rev. 2018 Nov;286(1):102-119 [PMID: 30294964]
  46. Am J Respir Crit Care Med. 2016 Oct 1;194(7):807-820 [PMID: 27007260]
  47. Front Immunol. 2021 Feb 17;11:613975 [PMID: 33679701]
  48. BMC Bioinformatics. 2017 Mar 21;18(1):183 [PMID: 28327092]
  49. Int J Mol Sci. 2019 Jun 25;20(12): [PMID: 31242676]
  50. Infect Immun. 2017 Feb 23;85(3): [PMID: 27993972]
  51. Front Microbiol. 2021 May 31;12:636250 [PMID: 34135870]
  52. Immunity. 2014 Jul 17;41(1):14-20 [PMID: 25035950]
  53. Front Immunol. 2022 Dec 20;13:1056477 [PMID: 36605195]
  54. Future Microbiol. 2010 Jan;5(1):43-65 [PMID: 20020829]
  55. Mucosal Immunol. 2022 Feb;15(2):223-234 [PMID: 35017701]
  56. J Exp Med. 2020 Jan 6;217(1): [PMID: 31611249]
  57. Am J Respir Cell Mol Biol. 2017 Mar;56(3):322-331 [PMID: 27788015]
  58. Am J Respir Cell Mol Biol. 2017 Jul;57(1):66-76 [PMID: 28257233]
  59. Am J Physiol Lung Cell Mol Physiol. 2012 Sep;303(5):L469-75 [PMID: 22773692]
  60. Am J Respir Cell Mol Biol. 2020 Jun;62(6):767-782 [PMID: 32048861]
  61. J Immunol. 2021 Sep 15;207(6):1683-1693 [PMID: 34400525]
  62. Int J Mol Sci. 2019 Mar 06;20(5): [PMID: 30845751]
  63. Trends Cell Biol. 2020 Dec;30(12):979-989 [PMID: 33036870]
  64. Front Immunol. 2016 May 11;7:178 [PMID: 27242785]
  65. Front Cardiovasc Med. 2019 Jan 17;5:192 [PMID: 30705887]
  66. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):3942-6 [PMID: 8632994]
  67. J Infect Dis. 2006 Apr 1;193(7):1023-8 [PMID: 16518765]
  68. PLoS Pathog. 2010 Aug 19;6(8):e1001058 [PMID: 20808846]

MeSH Term

Mice
Animals
Macrophages, Alveolar
Pneumonia, Pneumocystis
Transcriptome
Glucocorticoids
Matrix Metalloproteinase 12
Multiomics
Mice, Inbred C57BL
Pneumocystis
Cytokines
Immunocompromised Host
Dexamethasone

Chemicals

Glucocorticoids
Matrix Metalloproteinase 12
Cytokines
Dexamethasone