The mechanical, optical, and thermal properties of graphene influencing its pre-clinical use in treating neurological diseases.

Ting Ye, Yi Yang, Jin Bai, Feng-Ying Wu, Lu Zhang, Long-Yue Meng, Yan Lan
Author Information
  1. Ting Ye: Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China.
  2. Yi Yang: Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China.
  3. Jin Bai: Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China.
  4. Feng-Ying Wu: Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China.
  5. Lu Zhang: Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China.
  6. Long-Yue Meng: Department of Environmental Science, Department of Chemistry, Yanbian University, Yanji, Jilin, China.
  7. Yan Lan: Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China.

Abstract

Rapid progress in nanotechnology has advanced fundamental neuroscience and innovative treatment using combined diagnostic and therapeutic applications. The atomic scale tunability of nanomaterials, which can interact with biological systems, has attracted interest in emerging multidisciplinary fields. graphene, a two-dimensional nanocarbon, has gained increasing attention in neuroscience due to its unique honeycomb structure and functional properties. Hydrophobic planar sheets of graphene can be effectively loaded with aromatic molecules to produce a defect-free and stable dispersion. The optical and thermal properties of graphene make it suitable for biosensing and bioimaging applications. In addition, graphene and its derivatives functionalized with tailored bioactive molecules can cross the blood-brain barrier for drug delivery, substantially improving their biological property. Therefore, graphene-based materials have promising potential for possible application in neuroscience. Herein, we aimed to summarize the important properties of graphene materials required for their application in neuroscience, the interaction between graphene-based materials and various cells in the central and peripheral nervous systems, and their potential clinical applications in recording electrodes, drug delivery, treatment, and as nerve scaffolds for neurological diseases. Finally, we offer insights into the prospects and limitations to aid graphene development in neuroscience research and nanotherapeutics that can be used clinically.

Keywords

References

  1. J Neural Eng. 2021 Apr 06;18(5): [PMID: 33690187]
  2. J Tissue Eng Regen Med. 2011 Apr;5(4):e17-35 [PMID: 21413155]
  3. Science. 2004 Oct 22;306(5696):666-9 [PMID: 15499015]
  4. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):1867-1876 [PMID: 31076002]
  5. Int J Nanomedicine. 2023 Feb 22;18:971-986 [PMID: 36855539]
  6. ACS Nano. 2010 Jun 22;4(6):3181-6 [PMID: 20481456]
  7. Nanoscale. 2022 Dec 1;14(46):17297-17314 [PMID: 36374249]
  8. Biomaterials. 2013 Apr;34(11):2787-95 [PMID: 23340196]
  9. Int J Mol Sci. 2019 Apr 24;20(8): [PMID: 31022890]
  10. Arch Immunol Ther Exp (Warsz). 2016 Jun;64(3):195-215 [PMID: 26502273]
  11. ACS Sens. 2019 Jan 25;4(1):200-210 [PMID: 30596230]
  12. Biomaterials. 2013 Apr;34(12):3002-9 [PMID: 23374706]
  13. Nano Lett. 2011 Dec 14;11(12):5201-7 [PMID: 22023654]
  14. ACS Nano. 2012 Jan 24;6(1):736-46 [PMID: 22195731]
  15. Adv Mater. 2012 Apr 10;24(14):1868-72 [PMID: 22378564]
  16. Adv Exp Med Biol. 2022;1351:43-64 [PMID: 35175611]
  17. Toxicology. 2010 Mar 10;269(2-3):136-47 [PMID: 19857541]
  18. Angew Chem Int Ed Engl. 2018 Sep 3;57(36):11722-11727 [PMID: 30006967]
  19. Nano Lett. 2017 May 10;17(5):3297-3301 [PMID: 28383278]
  20. Arch Toxicol. 2014 Nov;88(11):1987-2012 [PMID: 25234085]
  21. J Appl Toxicol. 2017 Oct;37(10):1140-1150 [PMID: 28418071]
  22. Nano Lett. 2009 Dec;9(12):4359-63 [PMID: 19845330]
  23. RSC Adv. 2019 Mar 12;9(15):8315-8325 [PMID: 35518668]
  24. Biomaterials. 2011 Dec;32(35):9374-82 [PMID: 21903256]
  25. Colloids Surf B Biointerfaces. 2018 Nov 1;171:260-275 [PMID: 30041150]
  26. Nano Res. 2008;1(3):203-212 [PMID: 20216934]
  27. Nano Lett. 2009 Jan;9(1):30-5 [PMID: 19046078]
  28. Adv Mater. 2013 Oct 11;25(38):5477-82 [PMID: 23824715]
  29. ACS Appl Mater Interfaces. 2020 Feb 19;12(7):7915-7930 [PMID: 31935055]
  30. PLoS One. 2015 Dec 14;10(12):e0144842 [PMID: 26658644]
  31. Nanomedicine (Lond). 2014 Nov;9(16):2445-55 [PMID: 24564300]
  32. ACS Nano. 2015;9(4):4636-48 [PMID: 25858670]
  33. ACS Nano. 2011 Jun 28;5(6):4670-8 [PMID: 21528849]
  34. Environ Health Toxicol. 2015 Jul 15;30:e2015007 [PMID: 26602558]
  35. Adv Sci (Weinh). 2018 Jan 26;5(4):1700499 [PMID: 29721407]
  36. Nanoscale. 2011 Mar;3(3):1252-7 [PMID: 21270989]
  37. Bioconjug Chem. 2011 Dec 21;22(12):2558-67 [PMID: 22034966]
  38. ACS Nano. 2011 Jun 28;5(6):4987-96 [PMID: 21574593]
  39. J Biol Chem. 2008 Nov 14;283(46):31763-75 [PMID: 18784080]
  40. J Mater Chem B. 2020 Aug 12;8(31):6845-6856 [PMID: 32367098]
  41. Sci Adv. 2022 Apr 15;8(15):eabm6693 [PMID: 35417247]
  42. Commun Biol. 2021 Jan 29;4(1):136 [PMID: 33514839]
  43. Nanomaterials (Basel). 2021 Aug 11;11(8): [PMID: 34443877]
  44. ACS Chem Neurosci. 2020 Nov 18;11(22):3741-3748 [PMID: 33119989]
  45. Nanomedicine. 2013 Jul;9(5):600-4 [PMID: 23347893]
  46. J Am Chem Soc. 2011 May 4;133(17):6825-31 [PMID: 21476500]
  47. Front Bioeng Biotechnol. 2023 Jan 16;10:1050077 [PMID: 36727039]
  48. J Phys Chem B. 2019 Oct 31;123(43):9098-9103 [PMID: 31566974]
  49. Front Aging Neurosci. 2022 Sep 20;14:993281 [PMID: 36204557]
  50. Nano Lett. 2009 Jan;9(1):273-8 [PMID: 19105649]
  51. J Lipid Res. 2012 Feb;53(2):325-30 [PMID: 22100437]
  52. Front Chem. 2018 Oct 01;6:450 [PMID: 30327765]
  53. Toxicology. 2008 Nov 20;253(1-3):137-46 [PMID: 18835419]
  54. Macromol Biosci. 2018 Feb;18(2): [PMID: 29235729]
  55. Drug Metab Rev. 2019 Feb;51(1):91-104 [PMID: 30784324]
  56. Nat Nanotechnol. 2009 Feb;4(2):126-33 [PMID: 19197316]
  57. Biomaterials. 2016 Apr;86:33-41 [PMID: 26878439]
  58. Sci Rep. 2013;3:1604 [PMID: 23549373]
  59. Toxicol Appl Pharmacol. 2015 Apr 1;284(1):16-32 [PMID: 25554681]
  60. ACS Appl Mater Interfaces. 2016 Sep 28;8(38):25069-77 [PMID: 27589088]
  61. ACS Appl Mater Interfaces. 2022 Nov 2;14(43):49199-49211 [PMID: 36281936]
  62. Langmuir. 2017 Dec 12;33(49):14184-14194 [PMID: 29144756]
  63. Nanoscale Res Lett. 2011 Dec;6(1):8 [PMID: 27502632]
  64. Adv Mater. 2013 Dec 17;25(47):6884-8 [PMID: 24105849]
  65. Biochem Biophys Res Commun. 2013 Jan 25;430(4):1294-300 [PMID: 23261471]
  66. Nanoscale Horiz. 2020 Aug 1;5(8):1250-1263 [PMID: 32558850]
  67. Biomaterials. 2013 Nov;34(34):8660-70 [PMID: 23937915]
  68. Toxicol Res (Camb). 2018 Jul 2;7(6):1061-1070 [PMID: 30510679]
  69. Nanomaterials (Basel). 2020 Jul 24;10(8): [PMID: 32722040]
  70. Int J Biol Macromol. 2022 Aug 1;214:568-582 [PMID: 35752342]
  71. Acta Neurochir Suppl. 2010;106:337-41 [PMID: 19812974]
  72. J Mater Chem B. 2021 Mar 21;9(11):2736-2746 [PMID: 33688880]
  73. J Mater Chem B. 2022 Feb 9;10(6):966-976 [PMID: 35072687]
  74. Int J Mol Sci. 2021 Mar 15;22(6): [PMID: 33804239]
  75. Int J Mol Sci. 2019 Dec 06;20(24): [PMID: 31817593]
  76. Nat Commun. 2018 Feb 23;9(1):796 [PMID: 29476054]
  77. Curr Opin Neurobiol. 2020 Aug;63:53-58 [PMID: 32278210]
  78. Nat Commun. 2018 Jan 22;9(1):323 [PMID: 29358641]
  79. Acta Biomater. 2019 Apr 1;88:346-356 [PMID: 30822551]
  80. ACS Nano. 2016 Apr 26;10(4):4459-71 [PMID: 27030936]
  81. Nat Commun. 2014 Oct 20;5:5259 [PMID: 25327632]
  82. ACS Appl Bio Mater. 2018 Nov 19;1(5):1448-1457 [PMID: 34996249]
  83. Materials (Basel). 2017 Jul 04;10(7): [PMID: 28773109]
  84. Small. 2011 Feb 18;7(4):460-4 [PMID: 21360803]
  85. J Neurosci. 2005 Jan 5;25(1):1-9 [PMID: 15634761]
  86. Nanomedicine. 2020 Jun;26:102174 [PMID: 32147408]
  87. Molecules. 2021 Sep 25;26(19): [PMID: 34641347]
  88. Front Bioeng Biotechnol. 2016 Dec 06;4:94 [PMID: 27999773]
  89. Int J Nanomedicine. 2017 Aug 02;12:5501-5510 [PMID: 28814866]
  90. Biomaterials. 2013 Sep;34(27):6402-11 [PMID: 23755830]
  91. Mater Sci Eng C Mater Biol Appl. 2020 Feb;107:110201 [PMID: 31761243]
  92. Adv Mater. 2012 Aug 16;24(31):4285-90 [PMID: 22689093]
  93. ACS Appl Mater Interfaces. 2017 Jan 11;9(1):159-166 [PMID: 27957830]
  94. Adv Mater. 2014 Jun 11;26(22):3673-80 [PMID: 24668911]
  95. J Mol Graph Model. 2015 Sep;61:175-85 [PMID: 26275931]
  96. J Food Drug Anal. 2014 Mar;22(1):105-115 [PMID: 24673908]
  97. Nanomaterials (Basel). 2020 Apr 15;10(4): [PMID: 32326612]
  98. Biomaterials. 2014 Jun;35(19):5041-8 [PMID: 24685264]
  99. J Nanobiotechnology. 2015 Oct 30;13:78 [PMID: 26518450]
  100. ACS Nano. 2016 Jul 26;10(7):7154-71 [PMID: 27359048]
  101. Langmuir. 2010 Feb 16;26(4):2244-7 [PMID: 20099791]
  102. Biomaterials. 2016 Aug;99:72-81 [PMID: 27214651]
  103. Biomed Res Int. 2014;2014:212149 [PMID: 24592382]
  104. Sci Adv. 2020 Apr 29;6(18):eaaz2630 [PMID: 32494673]
  105. Small. 2013 Nov 11;9(21):3593-601 [PMID: 23625739]
  106. J Neuroimmune Pharmacol. 2017 Mar;12(1):84-98 [PMID: 27449494]
  107. eNeuro. 2022 May 9;9(3): [PMID: 35470227]
  108. Sci Adv. 2018 May 18;4(5):eaat0351 [PMID: 29795786]
  109. Acta Biomater. 2022 Nov;153:573-584 [PMID: 36130660]
  110. J Neurosurg Pediatr. 2013 May;11(5):575-83 [PMID: 23473006]
  111. Mutat Res Genet Toxicol Environ Mutagen. 2017 Nov;823:28-44 [PMID: 28985945]
  112. J Am Chem Soc. 2013 Mar 27;135(12):4799-804 [PMID: 23495667]
  113. J Mater Chem B. 2015 Apr 28;3(16):3211-3221 [PMID: 32262315]
  114. FASEB J. 2010 May;24(5):1347-53 [PMID: 20019240]
  115. Int J Nanomedicine. 2015 Jul 02;10:4267-77 [PMID: 26170663]
  116. ACS Appl Mater Interfaces. 2019 Jan 16;11(2):1876-1885 [PMID: 30582788]
  117. Science. 2008 Apr 11;320(5873):206-9 [PMID: 18339901]
  118. Acta Biomater. 2019 Jan 1;83:390-399 [PMID: 30448435]
  119. Biomaterials. 2016 Mar;82:84-93 [PMID: 26751821]
  120. ACS Nano. 2012 Mar 27;6(3):2041-55 [PMID: 22339712]
  121. Nanoscale Res Lett. 2016 Dec;11(1):247 [PMID: 27173676]
  122. Adv Healthc Mater. 2018 Jul;7(14):e1701290 [PMID: 29943431]
  123. Trends Biotechnol. 2011 May;29(5):205-12 [PMID: 21397350]
  124. Materials (Basel). 2017 Oct 02;10(10): [PMID: 28974044]
  125. Small. 2010 Feb 22;6(4):537-44 [PMID: 20033930]
  126. Materials (Basel). 2021 Oct 18;14(20): [PMID: 34683762]
  127. Micromachines (Basel). 2016 Oct 04;7(10): [PMID: 30404353]
  128. Biochem Biophys Res Commun. 2015 May 1;460(2):267-73 [PMID: 25778866]
  129. Nat Nanotechnol. 2018 Aug;13(8):755-764 [PMID: 29892019]
  130. Nano Lett. 2019 May 8;19(5):2858-2870 [PMID: 30983361]
  131. Front Neurosci. 2020 Oct 30;14:592502 [PMID: 33192279]
  132. Nat Commun. 2021 Aug 12;12(1):4880 [PMID: 34385444]
  133. Mater Sci Eng C Mater Biol Appl. 2021 Feb;119:111632 [PMID: 33321671]
  134. J Anal Methods Chem. 2021 Feb 22;2021:6661799 [PMID: 33688447]
  135. ACS Biomater Sci Eng. 2016 Mar 14;2(3):361-367 [PMID: 33429540]
  136. Sci Rep. 2016 Jul 11;6:29640 [PMID: 27404281]
  137. Adv Mater. 2011 Sep 22;23(36):H263-7 [PMID: 21823178]
  138. Anal Chim Acta. 2018 Aug 31;1022:124-130 [PMID: 29729732]
  139. ACS Nano. 2010 Mar 23;4(3):1321-6 [PMID: 20155972]
  140. Nanomaterials (Basel). 2022 Apr 20;12(9): [PMID: 35564114]
  141. Int J Nanomedicine. 2017 Oct 05;12:7291-7309 [PMID: 29042776]
  142. Science. 2011 Nov 4;334(6056):648-52 [PMID: 21979935]
  143. Biomaterials. 2016 Nov;106:193-204 [PMID: 27566868]
  144. Science. 2013 Apr 12;340(6129):211-6 [PMID: 23580530]
  145. Colloids Surf B Biointerfaces. 2019 Apr 1;176:96-105 [PMID: 30594708]
  146. ACS Appl Mater Interfaces. 2021 Jan 13;13(1):112-122 [PMID: 33397079]
  147. Biointerphases. 2020 Jun 03;15(3):031010 [PMID: 32493017]
  148. Nat Commun. 2017 Feb 16;8:14486 [PMID: 28205514]
  149. Science. 2003 Apr 18;300(5618):486-9 [PMID: 12702875]
  150. Front Bioeng Biotechnol. 2020 Jan 08;7:436 [PMID: 31998703]
  151. Endocr Rev. 2008 May;29(3):303-16 [PMID: 18314421]
  152. Int J Nanomedicine. 2020 Mar 03;15:1421-1435 [PMID: 32184596]
  153. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):651-664 [PMID: 30829545]
  154. Front Neurosci. 2018 Jan 22;12:1 [PMID: 29403346]
  155. Biomater Sci. 2018 Nov 1;6(11):2987-2997 [PMID: 30255874]
  156. Adv Mater. 2016 Aug;28(29):6232-8 [PMID: 26960186]
  157. Lasers Med Sci. 2016 Aug;31(6):1123-31 [PMID: 27189185]
  158. Sci Rep. 2017 Jul 18;7(1):5678 [PMID: 28720867]
  159. Adv Mater. 2012 Apr 3;24(13):1722-8 [PMID: 22407491]
  160. Nanomaterials (Basel). 2022 Nov 17;12(22): [PMID: 36432343]
  161. Int J Mol Sci. 2019 Sep 14;20(18): [PMID: 31540083]
  162. Int J Mol Sci. 2020 Oct 23;21(21): [PMID: 33114038]
  163. Nat Commun. 2016 Jun 07;7:11800 [PMID: 27270085]
  164. Nano Lett. 2005 Jun;5(6):1107-10 [PMID: 15943451]
  165. Int J Nanomedicine. 2020 Aug 25;15:6421-6432 [PMID: 32922009]
  166. Int J Nanomedicine. 2021 Mar 05;16:1901-1911 [PMID: 33707945]
  167. Adv Healthc Mater. 2015 Aug 26;4(12):1861-8 [PMID: 26115359]
  168. Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13339-13349 [PMID: 32482882]
  169. Biosci Rep. 2019 Dec 20;39(12): [PMID: 31833555]
  170. Mater Sci Eng C Mater Biol Appl. 2019 Jul;100:759-770 [PMID: 30948113]
  171. Biosens Bioelectron. 2022 Aug 1;209:114263 [PMID: 35483214]
  172. ACS Nano. 2011 Sep 27;5(9):7334-41 [PMID: 21793541]
  173. Colloids Surf B Biointerfaces. 2015 May 1;129:21-9 [PMID: 25819362]
  174. J Mater Chem B. 2021 Dec 8;9(47):9720-9733 [PMID: 34787627]
  175. Int J Nanomedicine. 2015 Feb 25;10:1585-96 [PMID: 25759581]
  176. Analyst. 2020 Apr 21;145(8):2854-2872 [PMID: 32096500]
  177. Adv Healthc Mater. 2017 Apr;6(7): [PMID: 28218474]
  178. Adv Healthc Mater. 2021 Mar;10(6):e2001502 [PMID: 33464711]
  179. Nanoscale. 2014 Jul 21;6(14):7853-7 [PMID: 24934601]
  180. Nanoscale. 2013 Nov 7;5(21):10316-26 [PMID: 24056702]
  181. Biomaterials. 2016 Nov;106:98-110 [PMID: 27552320]
  182. J Hazard Mater. 2022 Aug 5;435:129053 [PMID: 35650742]
  183. Colloids Surf B Biointerfaces. 2016 Oct 1;146:442-51 [PMID: 27395037]
  184. Nat Nanotechnol. 2008 Jul;3(7):434-9 [PMID: 18654569]
  185. Biomater Sci. 2016 Aug 16;4(9):1291-309 [PMID: 27480033]
  186. Biomaterials. 2014 Aug;35(25):7022-31 [PMID: 24854092]
  187. Nano Lett. 2020 May 13;20(5):3633-3641 [PMID: 32208704]
  188. Langmuir. 2018 Dec 18;34(50):15283-15292 [PMID: 30468385]
  189. Front Aging Neurosci. 2018 Oct 11;10:305 [PMID: 30364199]
  190. Nat Nanotechnol. 2022 Mar;17(3):301-309 [PMID: 34937934]
  191. Small. 2020 Nov 10;:e2004029 [PMID: 33210448]
  192. J Am Chem Soc. 2008 Aug 20;130(33):10876-7 [PMID: 18661992]
  193. Adv Healthc Mater. 2019 Mar;8(5):e1800571 [PMID: 30680955]
  194. Brain Res. 2003 Sep 5;983(1-2):23-35 [PMID: 12914963]
  195. ACS Biomater Sci Eng. 2019 Feb 11;5(2):613-622 [PMID: 33405825]
  196. R Soc Open Sci. 2018 Mar 7;5(3):171364 [PMID: 29657752]
  197. Drug Deliv. 2021 Dec;28(1):580-593 [PMID: 33729067]
  198. Brain Behav. 2017 Jun 30;7(8):e00755 [PMID: 28828216]
  199. J Biomed Nanotechnol. 2019 Mar 1;15(3):602-611 [PMID: 31165704]
  200. Science. 2008 Jul 18;321(5887):385-8 [PMID: 18635798]
  201. ACS Nano. 2012 Oct 23;6(10):8546-51 [PMID: 22992186]
  202. Nat Commun. 2014 Oct 20;5:5258 [PMID: 25327513]
  203. Biomed Pharmacother. 2019 Mar;111:666-675 [PMID: 30611991]
  204. Nanomedicine. 2015 Jan;11(1):109-18 [PMID: 25131339]
  205. Nano Lett. 2010 Sep 8;10(9):3318-23 [PMID: 20684528]
  206. Biomaterials. 2017 Oct;142:31-40 [PMID: 28719819]
  207. Adv Healthc Mater. 2013 Jul;2(7):929-33 [PMID: 23300024]
  208. ACS Nano. 2020 Feb 25;14(2):1936-1950 [PMID: 31961656]
  209. Front Syst Neurosci. 2017 Sep 27;11:71 [PMID: 29085285]
  210. ACS Nano. 2012 Jan 24;6(1):63-73 [PMID: 22017285]
  211. ACS Nano. 2022 Jun 28;16(6):9254-9266 [PMID: 35674718]
  212. Int J Nanomedicine. 2013;8:413-20 [PMID: 23378763]
  213. Beilstein J Nanotechnol. 2014 Oct 23;5:1849-63 [PMID: 25383297]
  214. Nanoscale. 2013 Oct 21;5(20):9934-43 [PMID: 23986404]
  215. Biomaterials. 2012 Mar;33(7):2206-14 [PMID: 22169821]
  216. Colloids Surf B Biointerfaces. 2012 Jan 1;89:79-85 [PMID: 21962852]
  217. Int J Mol Sci. 2015 Oct 23;16(10):25214-33 [PMID: 26512645]
  218. Front Neurosci. 2018 Jul 05;12:453 [PMID: 30026685]
  219. Int J Mol Sci. 2019 Mar 29;20(7): [PMID: 30934823]
  220. Nanoscale. 2019 Feb 21;11(8):3656-3664 [PMID: 30741290]

Word Cloud

Created with Highcharts 10.0.0grapheneneurosciencecanpropertiestreatmentapplicationsmaterialsnanomaterialsbiologicalsystemsmoleculesopticalthermaldrugdeliverygraphene-basedpotentialapplicationneurologicaldiseasesRapidprogressnanotechnologyadvancedfundamentalinnovativeusingcombineddiagnostictherapeuticatomicscaletunabilityinteractattractedinterestemergingmultidisciplinaryfieldsGraphenetwo-dimensionalnanocarbongainedincreasingattentiondueuniquehoneycombstructurefunctionalHydrophobicplanarsheetseffectivelyloadedaromaticproducedefect-freestabledispersionmakesuitablebiosensingbioimagingadditionderivativesfunctionalizedtailoredbioactivecrossblood-brainbarriersubstantiallyimprovingpropertyThereforepromisingpossibleHereinaimedsummarizeimportantrequiredinteractionvariouscellscentralperipheralnervousclinicalrecordingelectrodesnervescaffoldsFinallyofferinsightsprospectslimitationsaiddevelopmentresearchnanotherapeuticsusedclinicallymechanicalinfluencingpre-clinicalusetreatingneurons

Similar Articles

Cited By (2)