Precious but convenient means of prevention and treatment: physiological molecular mechanisms of interaction between exercise and motor factors and Alzheimer's disease.

Zikang Hao, Kerui Liu, Lu Zhou, Ping Chen
Author Information
  1. Zikang Hao: Department of Physical Education, Laoshan Campus, Ocean University of China, Qingdao, China.
  2. Kerui Liu: Department of Sports Medicine, Daiyue Campus, Shandong First Medical University, Tai'an, Shandong, China.
  3. Lu Zhou: Department of Sports Medicine, Daiyue Campus, Shandong First Medical University, Tai'an, Shandong, China.
  4. Ping Chen: Department of Physical Education, Laoshan Campus, Ocean University of China, Qingdao, China.

Abstract

Disproportionate to the severity of Alzheimer's disease (AD) and the huge number of patients, the exact treatment and prevention of AD is still being explored. With increasing ageing, the search for means to prevent and treat AD has become a high priority. In the search for AD, it has been suggested that exercise may be one of the more effective and less costly means of preventing and treating AD, and therefore a large part of current research is aimed at exploring the effectiveness of exercise in the prevention and treatment of AD. However, due to the complexity of the specific pathogenesis of AD, there are multiple hypotheses and potential mechanisms for exercise interventions in AD that need to be explored. This review therefore specifically summarises the hypotheses of the interaction between exercise and AD from a molecular perspective, based on the available evidence from animal models or human experiments, and explores them categorised according to the pathologies associated with AD: exercise can activate a number of signalling pathways inhibited by AD (e.g., Wnt and PI3K/Akt signalling pathways) and reactivate the effects of downstream factors regulated by these signalling pathways, thus acting to alleviate autophagic dysfunction, relieve neuroinflammation and mitigate Aβ deposition. In addition, this paper introduces a new approach to regulate the blood-brain barrier, i.e., to restore the stability of the blood-brain barrier, reduce abnormal phosphorylation of tau proteins and reduce neuronal apoptosis. In addition, this paper introduces a new concept." Motor factors" or "Exerkines", which act on AD through autocrine, paracrine or endocrine stimulation in response to movement. In this process, we believe there may be great potential for research in three areas: (1) the alleviation of AD through movement in the brain-gut axis (2) the prevention and treatment of AD by movement combined with polyphenols (3) the continued exploration of movement-mediated activation of the Wnt signalling pathway and AD.

Keywords

References

  1. J Transl Med. 2012 Nov 29;10:239 [PMID: 23190582]
  2. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Mar 2;106:110112 [PMID: 32949638]
  3. J Neurosci. 2010 May 26;30(21):7326-34 [PMID: 20505099]
  4. Exp Mol Med. 2016 Jul 15;48(7):e245 [PMID: 27416781]
  5. Neurosci Bull. 2014 Apr;30(2):271-81 [PMID: 24664866]
  6. Int J Mol Sci. 2020 Aug 14;21(16): [PMID: 32823945]
  7. Front Mol Neurosci. 2014 May 21;7:46 [PMID: 24904272]
  8. Int J Environ Res Public Health. 2021 Dec 17;18(24): [PMID: 34948942]
  9. Front Cell Neurosci. 2013 Jul 04;7:103 [PMID: 23847469]
  10. Psychogeriatrics. 2019 Mar;19(2):105-110 [PMID: 30430708]
  11. Exp Cell Res. 2018 Jan 1;362(1):180-187 [PMID: 29196167]
  12. J Pharmacol Exp Ther. 2017 Jan;360(1):201-205 [PMID: 27754930]
  13. J Exerc Nutrition Biochem. 2015 Sep;19(3):199-209 [PMID: 26527331]
  14. Neurochem Res. 2007 Dec;32(12):2062-71 [PMID: 17476590]
  15. Cell Metab. 2014 Aug 5;20(2):201-3 [PMID: 25100059]
  16. Neural Plast. 2022 Sep 10;2022:1500710 [PMID: 36124291]
  17. Endocrine. 2016 Aug;53(2):350-63 [PMID: 27160819]
  18. Biochim Biophys Acta. 2016 May;1862(5):887-900 [PMID: 26705676]
  19. BMC Public Health. 2014 May 27;14:510 [PMID: 24885250]
  20. J Appl Physiol (1985). 2022 Mar 1;132(3):824-834 [PMID: 35175106]
  21. Exp Ther Med. 2017 Jun;13(6):2763-2766 [PMID: 28587338]
  22. Gerontology. 2019;65(6):620-633 [PMID: 31242498]
  23. J Alzheimers Dis. 2011;26(2):315-29 [PMID: 21628793]
  24. Neurochem Int. 2017 Sep;108:309-317 [PMID: 28499951]
  25. J Mol Neurosci. 2019 Sep;69(1):28-38 [PMID: 31111330]
  26. Anat Cell Biol. 2013 Dec;46(4):229-34 [PMID: 24386594]
  27. Lancet Neurol. 2021 Jun;20(6):484-496 [PMID: 33933186]
  28. Cell Biosci. 2020 Mar 30;10:51 [PMID: 32257109]
  29. PLoS One. 2016 May 26;11(5):e0155733 [PMID: 27227831]
  30. Front Cell Neurosci. 2021 Oct 22;15:768059 [PMID: 34744634]
  31. Int J Mol Sci. 2019 Jun 03;20(11): [PMID: 31163574]
  32. J Neurol Neurosurg Psychiatry. 2020 Nov;91(11):1201-1209 [PMID: 32690803]
  33. Cell Metab. 2016 Aug 9;24(2):192-3 [PMID: 27508865]
  34. J Alzheimers Dis. 2019;68(2):531-535 [PMID: 30776003]
  35. Exp Neurobiol. 2015 Dec;24(4):325-40 [PMID: 26713080]
  36. Neural Regen Res. 2020 Aug;15(8):1417-1420 [PMID: 31997800]
  37. Antioxidants (Basel). 2021 Nov 19;10(11): [PMID: 34829710]
  38. J Sport Health Sci. 2019 Sep;8(5):422-441 [PMID: 31534817]
  39. Biomolecules. 2019 Jun 07;9(6): [PMID: 31181700]
  40. Redox Biol. 2019 Feb;21:101059 [PMID: 30576920]
  41. Neurosci Res. 2011 Feb;69(2):161-73 [PMID: 20969897]
  42. Acta Neuropathol. 2011 Sep;122(3):285-92 [PMID: 21630115]
  43. Rom J Morphol Embryol. 2018;59(2):455-467 [PMID: 30173249]
  44. Transl Neurodegener. 2022 Jan 28;11(1):4 [PMID: 35090576]
  45. Ageing Res Rev. 2022 Feb;74:101543 [PMID: 34923167]
  46. Front Aging Neurosci. 2021 Apr 14;13:641758 [PMID: 33935685]
  47. Exp Neurol. 2020 May;327:113249 [PMID: 32070713]
  48. Acta Pharm Sin B. 2022 Mar;12(3):1019-1040 [PMID: 35530153]
  49. Neural Regen Res. 2022 Mar;17(3):543-549 [PMID: 34380884]
  50. Ageing Res Rev. 2013 Jan;12(1):289-309 [PMID: 22742992]
  51. J Aging Phys Act. 2015 Oct;23(4):659-68 [PMID: 25414947]
  52. Biol Chem. 2021 Oct 07;403(1):43-71 [PMID: 34619027]
  53. Br J Sports Med. 2022 Jun;56(12):701-709 [PMID: 35301183]
  54. Neurosci Res. 2014 Feb;79:1-12 [PMID: 24144733]
  55. Healthcare (Basel). 2021 Jun 04;9(6): [PMID: 34200042]
  56. Int J Mol Sci. 2022 Aug 31;23(17): [PMID: 36077318]
  57. J Alzheimers Dis. 2019;72(4):981-1017 [PMID: 31744008]
  58. Pharmacol Ther. 2013 May;138(2):155-75 [PMID: 23348013]
  59. Nat Med. 2013 Aug;19(8):983-97 [PMID: 23921753]
  60. Curr Alzheimer Res. 2022 Dec 27;: [PMID: 36578263]
  61. Pharmacol Res. 2019 Jun;144:331-335 [PMID: 31042564]
  62. Oncogene. 2006 Dec 4;25(57):7545-53 [PMID: 17143299]
  63. Transl Psychiatry. 2021 Apr 28;11(1):251 [PMID: 33911072]
  64. Scand J Med Sci Sports. 2020 May;30(5):816-827 [PMID: 32020713]
  65. Rev Neurosci. 2019 Jul 26;30(5):477-484 [PMID: 30530893]
  66. Alzheimers Dement. 2019 Jan;15(1):158-167 [PMID: 30642436]
  67. Dement Geriatr Cogn Disord. 2019;47(4-6):306-314 [PMID: 31311027]
  68. J Neuroinflammation. 2022 Oct 4;19(1):243 [PMID: 36195875]
  69. Front Mol Neurosci. 2009 May 29;2:2 [PMID: 19521544]
  70. J Exp Med. 2020 Apr 6;217(4): [PMID: 32211826]
  71. Nat Med. 2019 Jan;25(1):165-175 [PMID: 30617325]
  72. Peptides. 2018 Apr;102:78-88 [PMID: 29309801]
  73. Cell Signal. 2014 Dec;26(12):2694-701 [PMID: 25173700]
  74. Sci Rep. 2019 Apr 8;9(1):5790 [PMID: 30962497]
  75. Nature. 2022 Feb 14;: [PMID: 35165406]
  76. Endocrinology. 2017 Feb 1;158(2):349-355 [PMID: 27792405]
  77. Front Cell Dev Biol. 2021 Aug 03;9:692888 [PMID: 34414184]
  78. J Neuroinflammation. 2019 Jan 24;16(1):15 [PMID: 30678702]
  79. Ageing Res Rev. 2013 Jun;12(3):786-800 [PMID: 23665425]
  80. Cell Signal. 2022 May;93:110300 [PMID: 35259454]
  81. Nat Rev Endocrinol. 2022 May;18(5):273-289 [PMID: 35304603]
  82. Alzheimers Dement. 2022 Apr;18(4):700-789 [PMID: 35289055]
  83. Transl Neurodegener. 2020 Nov 26;9(1):42 [PMID: 33239064]
  84. Cell Metab. 2013 Nov 5;18(5):649-59 [PMID: 24120943]
  85. Adv Physiol Educ. 2015 Jun;39(2):55-62 [PMID: 26031719]
  86. Neuromolecular Med. 2014 Mar;16(1):161-174 [PMID: 24114393]
  87. Int Rev Neurobiol. 2019;147:361-395 [PMID: 31607361]
  88. Biosci Biotechnol Biochem. 2012;76(6):1098-103 [PMID: 22790929]
  89. J Exp Med. 2017 Nov 6;214(11):3151-3169 [PMID: 29061693]
  90. Mol Neurobiol. 2023 Jan;60(1):277-291 [PMID: 36261693]
  91. Mol Neurodegener. 2014 Nov 14;9:48 [PMID: 25394486]
  92. Nat Rev Neurol. 2019 Oct;15(10):565-581 [PMID: 31501588]
  93. Curr Protein Pept Sci. 2020;21(12):1193-1201 [PMID: 32964822]
  94. CNS Neurol Disord Drug Targets. 2023;22(4):577-598 [PMID: 35440320]
  95. J Exerc Rehabil. 2015 Aug 30;11(4):198-203 [PMID: 26331134]
  96. J Mol Neurosci. 2022 Aug;72(8):1557-1571 [PMID: 35325356]
  97. FASEB J. 2015 Feb;29(2):623-35 [PMID: 25384422]
  98. Mol Brain. 2019 Dec 4;12(1):104 [PMID: 31801553]
  99. J Clin Epidemiol. 2021 Jun;134:103-112 [PMID: 33577987]
  100. Alzheimers Dement. 2016 Jun;12(6):719-32 [PMID: 27179961]
  101. J Alzheimers Dis. 2014;40(3):519-29 [PMID: 24496077]
  102. J Appl Physiol (1985). 2015 Nov 15;119(10):1097-104 [PMID: 26404616]
  103. Biomed Res Int. 2017;2017:9016924 [PMID: 28271072]
  104. Front Endocrinol (Lausanne). 2021 May 20;12:660181 [PMID: 34093436]
  105. Nat Rev Neurosci. 2013 Jun;14(6):401-16 [PMID: 23674053]
  106. FASEB J. 2018 Apr;32(4):1741-1777 [PMID: 29242278]
  107. Front Aging Neurosci. 2022 Feb 16;14:815347 [PMID: 35250543]
  108. J Neurosci. 2011 Apr 13;31(15):5589-95 [PMID: 21490199]
  109. Exp Neurobiol. 2022 Apr 30;31(2):65-88 [PMID: 35673997]
  110. Lancet Neurol. 2020 Apr;19(4):326-335 [PMID: 31986256]
  111. Neuron. 2013 Sep 4;79(5):873-86 [PMID: 24012002]
  112. Neuro Endocrinol Lett. 2014;35(1):13-9 [PMID: 24625911]
  113. J Steroid Biochem Mol Biol. 2016 Jun;160:134-47 [PMID: 26969397]
  114. Neurochem Int. 2013 Apr;62(5):540-55 [PMID: 22982299]
  115. Nat Rev Neurol. 2018 Nov;14(11):653-666 [PMID: 30291317]
  116. Physiol Rev. 2018 Apr 1;98(2):813-880 [PMID: 29488822]
  117. Exp Neurol. 2017 Feb;288:142-152 [PMID: 27889467]
  118. Mol Psychiatry. 2021 Mar;26(3):888-896 [PMID: 31332262]
  119. Maturitas. 2020 Sep;139:6-11 [PMID: 32747042]
  120. J Integr Neurosci. 2021 Mar 30;20(1):67-75 [PMID: 33834692]
  121. Med Sci Sports Exerc. 2018 May;50(5):945-956 [PMID: 29232315]
  122. Int Psychogeriatr. 2014 Jan;26(1):9-18 [PMID: 23962667]
  123. J Neuroimmunol. 2019 Jan 15;326:62-74 [PMID: 30502599]
  124. Curr Alzheimer Res. 2015;12(4):298-313 [PMID: 25731620]
  125. Biomol Ther (Seoul). 2012 May;20(3):245-55 [PMID: 24130920]
  126. Sci Rep. 2018 Aug 13;8(1):12050 [PMID: 30104698]

Word Cloud

Created with Highcharts 10.0.0ADexercisepreventionsignallingdiseasetreatmentmeanspathwaysmovementAlzheimer'snumberexploredsearchmaythereforeresearchhypothesespotentialmechanismsinterventionsinteractionmoleculareWntfactorsadditionpaperintroducesnewblood-brainbarrierreduceDisproportionateseverityhugepatientsexactstillincreasingageingpreventtreatbecomehighprioritysuggestedoneeffectivelesscostlypreventingtreatinglargepartcurrentaimedexploringeffectivenessHoweverduecomplexityspecificpathogenesismultipleneedreviewspecificallysummarisesperspectivebasedavailableevidenceanimalmodelshumanexperimentsexplorescategorisedaccordingpathologiesassociatedAD:canactivateinhibitedgPI3K/Aktreactivateeffectsdownstreamregulatedthusactingalleviateautophagicdysfunctionrelieveneuroinflammationmitigatedepositionapproachregulateirestorestabilityabnormalphosphorylationtauproteinsneuronalapoptosisconcept"Motorfactors""Exerkines"actautocrineparacrineendocrinestimulationresponseprocessbelievegreatthreeareas:1alleviationbrain-gutaxis2combinedpolyphenols3continuedexplorationmovement-mediatedactivationpathwayPreciousconvenienttreatment:physiologicalmotorAlzheimer’sagingneurodegenerativediseasesnonpharmacological

Similar Articles

Cited By (4)