Theoretical aspects of interaction of the anticancer drug cytarabine with human serum albumin.

Maryam Amirinasab, Maryam Dehestani
Author Information
  1. Maryam Amirinasab: Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
  2. Maryam Dehestani: Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran. ORCID

Abstract

Despite diagnostic and therapeutic methods, cancer is a major cause of death worldwide. Since anticancer drugs affect both normal and cancer cells, targeted drug delivery systems can play a key role in reducing the destructive effects of anticancer drugs on normal cells. In this regard, the use of stimulus-sensitive polymers has increased in recent years. This study has attempted to investigate interaction of the anticancer drug cytarabine with a stimuli-sensitive polymer, human serum albumin (HSA), one of the most abundant protein in blood plasma, via computational methods at both body temperature and tumor temperature. For this purpose, molecular docking was performed using Molegro virtual Docker software to select the best ligand in terms of binding energy to simulate molecular dynamics. Then, molecular dynamics simulation was performed on human serum albumin with code (1Ao6) and cytarabine with code (AR3), using Gromacs software and the results were presented in the graphs. The simulations were performed at 310 K (normal cell temperature) and 313 K (cancer cell temperature) in 100 ns. Results showed drug release occurred at a temperature of 313 K. These findings demonstrated the sensitivity of human serum albumin to temperature.

Keywords

References

  1. Int J Pharm. 2003 May 12;257(1-2):169-80 [PMID: 12711172]
  2. Molecules. 2016 Dec 20;21(12): [PMID: 27999414]
  3. J Med Chem. 2015 May 14;58(9):4066-72 [PMID: 25860834]
  4. Pharmacol Ther. 2010 Nov;128(2):324-35 [PMID: 20705093]
  5. Molecules. 2022 Sep 16;27(18): [PMID: 36144770]
  6. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):125-48 [PMID: 11259837]
  7. Cancer Gene Ther. 2017 Jun;24(6):233-243 [PMID: 28574057]
  8. J Cell Biochem. 2006 Apr 15;97(6):1184-90 [PMID: 16440317]
  9. Signal Transduct Target Ther. 2018 Mar 16;3:7 [PMID: 29560283]
  10. Nat Nanotechnol. 2007 Dec;2(12):751-60 [PMID: 18654426]
  11. J Biomol Struct Dyn. 2018 Feb;36(2):387-397 [PMID: 28049370]
  12. J Biomol Struct Dyn. 2023 Jun;41(9):4013-4023 [PMID: 35451934]
  13. Cancers (Basel). 2011 Jul 15;3(3):2888-903 [PMID: 24212938]
  14. Arch Otolaryngol Head Neck Surg. 2002 Jun;128(6):708-13 [PMID: 12049569]
  15. Expert Opin Drug Deliv. 2016 Nov;13(11):1609-1623 [PMID: 27216915]
  16. J Clin Oncol. 2008 Aug 20;26(24):4012-21 [PMID: 18711192]
  17. J Control Release. 2008 Dec 18;132(3):171-83 [PMID: 18582981]
  18. J Biomol Struct Dyn. 2006 Dec;24(3):277-83 [PMID: 17054386]
  19. Toxicol Lett. 2004 Feb 28;147(1):53-61 [PMID: 14700528]
  20. 3 Biotech. 2018 Dec;8(12):493 [PMID: 30498666]
  21. Clin Pharmacol Ther. 1971 Nov-Dec;12(6):944-54 [PMID: 5289712]
  22. J Biomol Struct Dyn. 2017 Jan;35(1):8-16 [PMID: 26646531]
  23. Int J Biol Macromol. 2016 Oct;91:703-9 [PMID: 27177461]
  24. Nanomedicine (Lond). 2010 Jul;5(5):793-806 [PMID: 20662649]
  25. J Control Release. 2007 Jul 16;120(1-2):1-3 [PMID: 17532520]
  26. Molecules. 2022 Jul 08;27(14): [PMID: 35889265]
  27. Leukemia. 2017 May;31(5):1187-1195 [PMID: 27833094]
  28. Expert Opin Drug Deliv. 2015 May;12(5):793-812 [PMID: 25518870]
  29. Nat Rev Drug Discov. 2014 Nov;13(11):813-27 [PMID: 25287120]
  30. Recent Pat Drug Deliv Formul. 2007;1(1):37-51 [PMID: 19075873]
  31. Molecules. 2019 Jul 12;24(14): [PMID: 31336916]
  32. Eur J Pharm Biopharm. 2008 Jan;68(1):34-45 [PMID: 17881200]
  33. Nat Biotechnol. 2007 Oct;25(10):1149-57 [PMID: 17873866]
  34. Expert Opin Drug Deliv. 2010 Aug;7(8):915-25 [PMID: 20586704]
  35. J Photochem Photobiol B. 2017 Aug;173:187-195 [PMID: 28595073]
  36. Biomed Res Int. 2014;2014:895831 [PMID: 25054154]
  37. Pharmaceutics. 2018 Aug 22;10(3): [PMID: 30131473]
  38. Adv Drug Deliv Rev. 2018 May;130:73-89 [PMID: 30012492]
  39. CA Cancer J Clin. 2018 Nov;68(6):394-424 [PMID: 30207593]
  40. J Biomol Struct Dyn. 2023 Mar;41(5):1527-1539 [PMID: 34974820]
  41. Pharm Res. 1996 Jan;13(1):27-31 [PMID: 8668674]
  42. J Biomol Struct Dyn. 2018 May;36(6):1490-1510 [PMID: 28504004]
  43. J Cell Physiol. 2015 Feb;230(2):259-71 [PMID: 25196387]
  44. J Biomol Struct Dyn. 2015;33(3):513-33 [PMID: 24720899]
  45. CA Cancer J Clin. 2015 May-Jun;65(3):212-20 [PMID: 25754421]
  46. Adv Protein Chem. 1985;37:161-245 [PMID: 3904348]
  47. J Clin Oncol. 1991 Apr;9(4):679-93 [PMID: 1648599]

Word Cloud

Created with Highcharts 10.0.0temperaturedrugserumalbuminanticancerhumancancernormalcytarabinemolecularperformeddynamicsmethodsdrugscellsdeliveryinteractiondockingusingsoftwaresimulationcodecell313 KMolecularDespitediagnostictherapeuticmajorcausedeathworldwideSinceaffecttargetedsystemscanplaykeyrolereducingdestructiveeffectsregardusestimulus-sensitivepolymersincreasedrecentyearsstudyattemptedinvestigatestimuli-sensitivepolymerHSAoneabundantproteinbloodplasmaviacomputationalbodytumorpurposeMolegrovirtualDockerselectbestligandtermsbindingenergysimulate1Ao6AR3Gromacsresultspresentedgraphssimulations310 K100 nsResultsshowedreleaseoccurredfindingsdemonstratedsensitivityTheoreticalaspectsCytarabineHumanTargeted

Similar Articles

Cited By