Spatial Autocorrelation of COVID-19 in Slovakia.

Katarína Vilinová, Lucia Petrikovičová
Author Information
  1. Katarína Vilinová: Department of Geography, Geoinformatics and Regional Development, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia. ORCID
  2. Lucia Petrikovičová: Department of Geography, Geoinformatics and Regional Development, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University, 949 01 Nitra, Slovakia. ORCID

Abstract

The pandemic situation of COVID-19, which affected almost the entire civilized world with its consequences, offered a unique opportunity for analysis of geographical space. In a relatively short period of time, the COVID-19 pandemic became a truly global event with consequences affecting all areas of life. Circumstances with COVID-19, which affected the territory of Slovakia and its regions, represent a sufficient premise for analysis three years after the registration of the first case in Slovakia. The study presents the results of a detailed spatiotemporal analysis of the course of registered cases of COVID-19 in six periods in Slovakia. The aim of the paper was to analyze the development of the number of people infected with the disease COVID-19 in Slovakia. At the level of the districts of Slovakia, using spatial autocorrelation, we identified spatial differences in the disease of COVID-19. Moran's global autocorrelation index and Moran's local index were used in the synthesis of knowledge. Spatial analysis of data on the number of infected in the form of spatial autocorrelation analysis was used as a practical sustainable approach to localizing statistically significant areas with high and low positivity. This manifested itself in the monitored area mainly in the form of positive spatial autocorrelation. The selection of data and methods used in this study together with the achieved and presented results can serve as a suitable tool to support decisions in further measures for the future.

Keywords

References

  1. BMC Public Health. 2021 Aug 2;21(1):1490 [PMID: 34340668]
  2. Spat Spatiotemporal Epidemiol. 2022 Nov;43:100534 [PMID: 36460444]
  3. J Adv Res. 2020 Mar 16;24:91-98 [PMID: 32257431]
  4. JAMA Intern Med. 2020 Jul 1;180(7):927-928 [PMID: 32259190]
  5. Lancet Infect Dis. 2020 Jun;20(6):669-677 [PMID: 32240634]
  6. Int J Environ Res Public Health. 2022 Jun 10;19(12): [PMID: 35742413]
  7. Proc Natl Acad Sci U S A. 2020 May 12;117(19):10484-10491 [PMID: 32327608]
  8. BMC Pregnancy Childbirth. 2022 Jul 21;22(1):582 [PMID: 35864462]
  9. SN Soc Sci. 2022;2(5):59 [PMID: 35499066]
  10. Spat Spatiotemporal Epidemiol. 2023 Feb;44:100560 [PMID: 36707193]
  11. Euro Surveill. 2020 Mar;25(9): [PMID: 32156332]
  12. Int J Environ Res Public Health. 2020 Jun 15;17(12): [PMID: 32549334]
  13. Lancet. 2020 Mar 28;395(10229):1015-1018 [PMID: 32197103]
  14. Environ Res. 2023 Jan 1;216(Pt 3):114662 [PMID: 36374652]
  15. Int J Infect Dis. 2020 Sep;98:153-160 [PMID: 32619761]
  16. Int J Environ Res Public Health. 2021 Feb 27;18(5): [PMID: 33673545]
  17. Lancet Psychiatry. 2020 Mar;7(3):e14 [PMID: 32035030]
  18. PLoS One. 2018 Jun 5;13(6):e0198353 [PMID: 29870539]
  19. BMC Infect Dis. 2021 Aug 14;21(1):816 [PMID: 34391402]
  20. Sci Total Environ. 2020 Nov 20;744:140929 [PMID: 32687995]
  21. J Pers Med. 2022 Mar 03;12(3): [PMID: 35330387]
  22. Lancet Infect Dis. 2020 May;20(5):527-529 [PMID: 32224312]
  23. Trop Med Infect Dis. 2023 Jan 26;8(2): [PMID: 36828501]
  24. Saf Sci. 2021 Jan;133:104999 [PMID: 32952302]
  25. Sci China Life Sci. 2020 Mar;63(3):457-460 [PMID: 32009228]
  26. Spat Spatiotemporal Epidemiol. 2020 Aug;34:100355 [PMID: 32807400]
  27. Geospat Health. 2020 Jun 15;15(1): [PMID: 32575956]
  28. Int J Environ Res Public Health. 2021 Mar 10;18(6): [PMID: 33802001]
  29. Sci Total Environ. 2021 Jan 10;751:141663 [PMID: 32866831]
  30. Int J Environ Res Public Health. 2021 Aug 28;18(17): [PMID: 34501672]
  31. Bull Natl Res Cent. 2020;44(1):138 [PMID: 32843835]

Grants

  1. Grant Agency VEGA project No 1/0880/21 "Transformation of the Nitra Region in Changing So-cio-economic Conditions with Special Focus to the Effects of the COVID-19 Pandemics"/VEGA

Word Cloud

Created with Highcharts 10.0.0COVID-19SlovakiaanalysisspatialautocorrelationusedpandemicaffectedconsequencesglobalareasstudyresultsnumberinfecteddiseaseMoran'sindexSpatialdataformsituationalmostentirecivilizedworldoffereduniqueopportunitygeographicalspacerelativelyshortperiodtimebecametrulyeventaffectinglifeCircumstancesterritoryregionsrepresentsufficientpremisethreeyearsregistrationfirstcasepresentsdetailedspatiotemporalcourseregisteredcasessixperiodsaimpaperanalyzedevelopmentpeopleleveldistrictsusingidentifieddifferenceslocalsynthesisknowledgepracticalsustainableapproachlocalizingstatisticallysignificanthighlowpositivitymanifestedmonitoredareamainlypositiveselectionmethodstogetherachievedpresentedcanservesuitabletoolsupportdecisionsmeasuresfutureAutocorrelationdistrict

Similar Articles

Cited By (3)