Circulating proteome for pulmonary nodule malignancy.

Elham Khodayari Moez, Matthew T Warkentin, Yonathan Brhane, Stephen Lam, John K Field, Geoffrey Liu, Javier J Zulueta, Karmele Valencia, Miguel Mesa-Guzman, Andrea Pasquier Nialet, Sukhinder Atkar-Khattra, Michael P A Davies, Benjamin Grant, Kiera Murison, Luis M Montuenga, Christopher I Amos, Hilary A Robbins, Mattias Johansson, Rayjean J Hung
Author Information
  1. Elham Khodayari Moez: Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada. ORCID
  2. Matthew T Warkentin: Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada. ORCID
  3. Yonathan Brhane: Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada. ORCID
  4. Stephen Lam: Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada.
  5. John K Field: Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
  6. Geoffrey Liu: Computational Biology and Medicine Program, Princess Margaret Cancer Center, Toronto, ON, Canada. ORCID
  7. Javier J Zulueta: Division of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai Morningside Hospital, Icahn School of Medicine, New York, NY, USA. ORCID
  8. Karmele Valencia: Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain. ORCID
  9. Miguel Mesa-Guzman: Thoracic Surgery Department, Cl��nica Universidad de Navarra, Pamplona, Spain.
  10. Andrea Pasquier Nialet: Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain.
  11. Sukhinder Atkar-Khattra: Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada. ORCID
  12. Michael P A Davies: Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
  13. Benjamin Grant: Computational Biology and Medicine Program, Princess Margaret Cancer Center, Toronto, ON, Canada.
  14. Kiera Murison: Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.
  15. Luis M Montuenga: Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain.
  16. Christopher I Amos: Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.
  17. Hilary A Robbins: Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France. ORCID
  18. Mattias Johansson: Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France. ORCID
  19. Rayjean J Hung: Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada. ORCID

Abstract

BACKGROUND: Although lung cancer screening with low-dose computed tomography is rolling out in many areas of the world, differentiating indeterminate pulmonary nodules remains a major challenge. We conducted one of the first systematic investigations of circulating protein markers to differentiate malignant from benign screen-detected pulmonary nodules.
METHODS: Based on 4 international low-dose computed tomography screening studies, we assayed 1078 protein markers using prediagnostic blood samples from 1253 participants based on a nested case-control design. Protein markers were measured using proximity extension assays, and data were analyzed using multivariable logistic regression, random forest, and penalized regressions. Protein burden scores (PBSs) for overall nodule malignancy and imminent tumors were estimated.
RESULTS: We identified 36 potentially informative circulating protein markers differentiating malignant from benign nodules, representing a tightly connected biological network. Ten markers were found to be particularly relevant for imminent lung cancer diagnoses within 1 year. Increases in PBSs for overall nodule malignancy and imminent tumors by 1 standard deviation were associated with odds ratios of 2.29 (95% confidence interval: 1.95 to 2.72) and 2.81 (95% confidence interval: 2.27 to 3.54) for nodule malignancy overall and within 1���year of diagnosis, respectively. Both PBSs for overall nodule malignancy and for imminent tumors were substantially higher for those with malignant nodules than for those with benign nodules, even when limited to Lung Computed Tomography Screening Reporting and Data System (LungRADS) category 4 (P���<���.001).
CONCLUSIONS: Circulating protein markers can help differentiate malignant from benign pulmonary nodules. Validation with an independent computed tomographic screening study will be required before clinical implementation.

References

  1. Cancers (Basel). 2021 Feb 15;13(4): [PMID: 33671847]
  2. Immunobiology. 2020 Jan;225(1):151848 [PMID: 31980218]
  3. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  4. Curr Chall Thorac Surg. 2023 Feb 25;5: [PMID: 37016707]
  5. J Clin Oncol. 2022 Mar 10;40(8):876-883 [PMID: 34995129]
  6. Arch Bronconeumol. 2015 Apr;51(4):169-76 [PMID: 25641356]
  7. Ann Epidemiol. 2023 Jan;77:1-12 [PMID: 36404465]
  8. Genet Mol Res. 2016 Nov 03;15(4): [PMID: 27819723]
  9. J Thorac Oncol. 2017 Mar;12(3):578-584 [PMID: 27615397]
  10. Clin Chim Acta. 2022 Sep 1;534:106-114 [PMID: 35870539]
  11. N Engl J Med. 2011 Aug 4;365(5):395-409 [PMID: 21714641]
  12. Lung Cancer. 2010 Feb;67(2):177-83 [PMID: 19427055]
  13. Mol Cell Proteomics. 2002 Nov;1(11):845-67 [PMID: 12488461]
  14. PLoS One. 2014 Apr 22;9(4):e95192 [PMID: 24755770]
  15. J Thorac Dis. 2020 Jun;12(6):3317-3330 [PMID: 32642255]
  16. Science. 2015 Jan 23;347(6220):1260419 [PMID: 25613900]
  17. Clin Chem Lab Med. 2014 Nov;52(11):1639-48 [PMID: 24829194]
  18. Biomark Insights. 2018 Jan 15;13:1177271917751608 [PMID: 29371783]
  19. Life (Basel). 2021 Nov 21;11(11): [PMID: 34833148]
  20. Front Mol Biosci. 2021 Mar 10;8:628332 [PMID: 33791337]
  21. Lancet Oncol. 2017 Nov;18(11):1523-1531 [PMID: 29055736]
  22. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  23. Occup Environ Med. 2004 Dec;61(12):e59 [PMID: 15550597]
  24. Scand J Immunol. 2021 Feb;93(2):e12965 [PMID: 32869346]
  25. Transl Res. 2021 Jul;233:77-91 [PMID: 33618009]
  26. Cell Death Dis. 2021 Jul 31;12(8):757 [PMID: 34333527]
  27. Neoplasma. 2022 May;69(3):729-740 [PMID: 35471981]
  28. Respir Res. 2006 Apr 06;7:61 [PMID: 16600032]
  29. Am J Physiol Lung Cell Mol Physiol. 2014 Jan 1;306(1):L10-22 [PMID: 24213919]
  30. Biomed Res Clin Pract. 2018 Dec;3(4): [PMID: 32913898]
  31. NPJ Breast Cancer. 2018 Apr 30;4:9 [PMID: 29736411]
  32. Thorax. 2019 Aug;74(8):761-767 [PMID: 31028232]
  33. Int J Cancer. 2021 Apr 5;: [PMID: 33818764]
  34. Cancer Epidemiol Biomarkers Prev. 2020 Dec;29(12):2411-2415 [PMID: 33093160]
  35. Diagn Progn Res. 2018 Nov 29;2:22 [PMID: 31093569]
  36. J Biol Chem. 2000 Sep 1;275(35):26935-43 [PMID: 10864933]
  37. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  38. J Transl Med. 2015 Feb 12;13:55 [PMID: 25880432]
  39. JAMA Oncol. 2018 Oct 1;4(10):e182078 [PMID: 30003238]
  40. Health Technol Assess. 2016 May;20(40):1-146 [PMID: 27224642]
  41. N Engl J Med. 2013 Sep 5;369(10):910-9 [PMID: 24004118]
  42. JAMA. 2021 Mar 09;325(10):962-970 [PMID: 33687470]
  43. Clin Immunol. 2020 Jan;210:108262 [PMID: 31629809]
  44. Pediatr Res. 2015 Dec;78(6):603-8 [PMID: 26334989]
  45. N Engl J Med. 2020 Feb 6;382(6):503-513 [PMID: 31995683]
  46. Bioinformatics. 2005 Sep 15;21(18):3587-95 [PMID: 15994189]
  47. J Thorac Oncol. 2019 Oct;14(10):1732-1742 [PMID: 31260833]
  48. J Exp Med. 1995 Jan 1;181(1):71-7 [PMID: 7528780]
  49. Fukushima J Med Sci. 2008 Dec;54(2):61-72 [PMID: 19418968]
  50. Transl Lung Cancer Res. 2021 Jan;10(1):233-242 [PMID: 33569307]
  51. Respir Res. 2022 May 12;23(1):120 [PMID: 35550579]
  52. Thorax. 2016 Feb;71(2):161-70 [PMID: 26645413]
  53. Nat Med. 1998 Jan;4(1):31-6 [PMID: 9427603]
  54. J Thorac Oncol. 2021 Feb;16(2):228-236 [PMID: 33137463]
  55. Invest New Drugs. 2018 Apr;36(2):315-322 [PMID: 29134432]
  56. Thorax. 2015 Aug;70 Suppl 2:ii1-ii54 [PMID: 26082159]
  57. Nucleic Acids Res. 2020 Jan 8;48(D1):D1153-D1163 [PMID: 31665479]
  58. Future Oncol. 2014 Jun;10(8):1501-13 [PMID: 25052758]
  59. Adv Sci (Weinh). 2021 May 07;8(13):2100104 [PMID: 34258160]
  60. Chest. 2018 Sep;154(3):491-500 [PMID: 29496499]
  61. J Pathol. 2003 Oct;201(2):268-77 [PMID: 14517844]
  62. Pulmonology. 2022 Nov-Dec;28(6):454-460 [PMID: 32739327]
  63. Cell Death Discov. 2021 Jan 15;7(1):12 [PMID: 33452234]
  64. Cancer Microenviron. 2016 Dec;9(2-3):77-84 [PMID: 27106232]
  65. Carcinogenesis. 2017 Aug 1;38(8):766-780 [PMID: 28637319]
  66. Eur Respir Rev. 2021 Jul 20;30(161): [PMID: 34289983]
  67. Nat Rev Cancer. 2017 Mar;17(3):199-204 [PMID: 28154374]
  68. Matrix Biol. 2015 May-Jul;44-46:167-74 [PMID: 25686691]
  69. Int J Cancer. 2001 Feb 15;91(4):468-73 [PMID: 11251967]
  70. Chest. 2005 Oct;128(4):2490-6 [PMID: 16236914]
  71. J Thorac Oncol. 2019 Mar;14(3):343-357 [PMID: 30529598]
  72. Am J Epidemiol. 2017 Jan 15;185(2):86-95 [PMID: 27998891]

Grants

  1. 001/World Health Organization
  2. R01 CA262164/NCI NIH HHS
  3. U19 CA203654/NCI NIH HHS

MeSH Term

Humans
Lung Neoplasms
Proteome
Early Detection of Cancer
Solitary Pulmonary Nodule
Lung
Multiple Pulmonary Nodules

Chemicals

Proteome

Word Cloud

Created with Highcharts 10.0.0nodulesmarkersnodulemalignancypulmonaryproteinmalignantbenignoverallimminent2screeningcomputedusingPBSstumors1lungcancerlow-dosetomographydifferentiatingcirculatingdifferentiate4Proteinwithin95%confidenceinterval:CirculatingBACKGROUND:Althoughrollingmanyareasworldindeterminateremainsmajorchallengeconductedonefirstsystematicinvestigationsscreen-detectedMETHODS:Basedinternationalstudiesassayed1078prediagnosticbloodsamples1253participantsbasednestedcase-controldesignmeasuredproximityextensionassaysdataanalyzedmultivariablelogisticregressionrandomforestpenalizedregressionsburdenscoresestimatedRESULTS:identified36potentiallyinformativerepresentingtightlyconnectedbiologicalnetworkTenfoundparticularlyrelevantdiagnosesyearIncreasesstandarddeviationassociatedoddsratios29957281273541���yeardiagnosisrespectivelysubstantiallyhigherevenlimitedto LungComputedTomographyScreeningReportingDataSystemLungRADScategoryP���<���001CONCLUSIONS:canhelpValidationindependenttomographicstudywillrequiredclinicalimplementationproteome

Similar Articles

Cited By (6)