ATP13A4 Upregulation Drives the Elevated Polyamine Transport System in the Breast Cancer Cell Line MCF7.

Sarah van Veen, Antria Kourti, Elke Ausloos, Joris Van Asselberghs, Chris Van den Haute, Veerle Baekelandt, Jan Eggermont, Peter Vangheluwe
Author Information
  1. Sarah van Veen: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
  2. Antria Kourti: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
  3. Elke Ausloos: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium.
  4. Joris Van Asselberghs: Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium. ORCID
  5. Chris Van den Haute: Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
  6. Veerle Baekelandt: Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium.
  7. Jan Eggermont: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium. ORCID
  8. Peter Vangheluwe: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium. ORCID

Abstract

Polyamine homeostasis is disturbed in several human diseases, including cancer, which is hallmarked by increased intracellular polyamine levels and an upregulated polyamine transport system (PTS). Thus far, the polyamine transporters contributing to the elevated levels of polyamines in cancer cells have not yet been described, despite the fact that polyamine transport inhibitors are considered for cancer therapy. Here, we tested whether the upregulation of candidate polyamine transporters of the P5B transport ATPase family is responsible for the increased PTS in the well-studied breast cancer cell line MCF7 compared to the non-tumorigenic epithelial breast cell line MCF10A. We found that MCF7 cells presented elevated expression of a previously uncharacterized P5B-ATPase, ATP13A4, which was responsible for the elevated polyamine uptake activity. Furthermore, MCF7 cells were more sensitive to polyamine cytotoxicity, as demonstrated by cell viability, cell death and clonogenic assays. Importantly, the overexpression of ATP13A4 WT in MCF10A cells induced a MCF7 polyamine phenotype, with significantly higher uptake of BODIPY-labeled polyamines and increased sensitivity to polyamine toxicity. In conclusion, we established ATP13A4 as a new polyamine transporter in the human PTS and showed that ATP13A4 may play a major role in the increased polyamine uptake of breast cancer cells. ATP13A4 therefore emerges as a candidate therapeutic target for anticancer drugs that block the PTS.

Keywords

References

  1. J Antibiot (Tokyo). 1989 Jan;42(1):116-22 [PMID: 2921216]
  2. Chembiochem. 2018 May 4;19(9):907-911 [PMID: 29451723]
  3. Med Sci (Basel). 2022 Sep 10;10(3): [PMID: 36135836]
  4. Mol Cell. 2021 Nov 18;81(22):4635-4649.e8 [PMID: 34715013]
  5. Mol Cell. 2021 Nov 18;81(22):4650-4662.e4 [PMID: 34715014]
  6. Biochem J. 1995 Nov 1;311 ( Pt 3):723-7 [PMID: 7487924]
  7. Nature. 2020 Feb;578(7793):82-93 [PMID: 32025007]
  8. Chem Commun (Camb). 2015 Apr 30;51(34):7360-3 [PMID: 25820226]
  9. Nature. 2020 Feb;578(7795):419-424 [PMID: 31996848]
  10. Breast Cancer Res Treat. 2000 Mar;60(2):99-105 [PMID: 10845272]
  11. Amino Acids. 2010 Feb;38(2):415-22 [PMID: 19956998]
  12. Am J Physiol Gastrointest Liver Physiol. 2003 Nov;285(5):G980-91 [PMID: 12869386]
  13. Sci Rep. 2022 Mar 8;12(1):4045 [PMID: 35260637]
  14. Biochim Biophys Acta Mol Cell Res. 2022 Dec;1869(12):119354 [PMID: 36064065]
  15. Int J Mol Sci. 2020 Mar 31;21(7): [PMID: 32244348]
  16. J Natl Cancer Inst. 2022 Jan 11;114(1):97-108 [PMID: 34250544]
  17. World J Surg Oncol. 2015 Aug 07;13:238 [PMID: 26245297]
  18. PLoS One. 2018 Mar 5;13(3):e0193228 [PMID: 29505581]
  19. J Enzyme Inhib Med Chem. 2020 Dec;35(1):574-583 [PMID: 31994958]
  20. Am J Cancer Res. 2016 Jun 01;6(6):1231-52 [PMID: 27429841]
  21. Onco Targets Ther. 2020 Aug 20;13:8313-8316 [PMID: 32903930]
  22. Immunogenetics. 2021 Aug;73(4):277-289 [PMID: 33743014]
  23. Anticancer Res. 2015 Jun;35(6):3147-54 [PMID: 26026074]
  24. Breast Cancer Res. 2009;11(5):209 [PMID: 19818165]
  25. Cancer Res. 1990 Sep 15;50(18):6075-86 [PMID: 1975513]
  26. Biomolecules. 2023 Feb 09;13(2): [PMID: 36830711]
  27. J Natl Cancer Inst. 1973 Nov;51(5):1409-16 [PMID: 4357757]
  28. Nat Commun. 2021 Jun 25;12(1):3973 [PMID: 34172751]
  29. J Natl Cancer Inst. 2020 Jun 1;112(6):607-616 [PMID: 31503278]
  30. Cell Discov. 2021 Nov 2;7(1):106 [PMID: 34728622]
  31. J Physiol. 1959 Mar 3;145(2):384-404 [PMID: 13642308]
  32. Cancer Discov. 2012 May;2(5):401-4 [PMID: 22588877]
  33. Mol Cancer Ther. 2015 Jun;14(6):1495-503 [PMID: 25852062]
  34. Oncol Rep. 2018 Jun;39(6):2845-2854 [PMID: 29693131]
  35. EMBO Mol Med. 2018 Oct;10(10): [PMID: 30190333]
  36. Cancer Lett. 2021 Oct 28;519:91-104 [PMID: 34186159]
  37. Environ Sci Technol. 2023 Feb 21;57(7):2864-2876 [PMID: 36745568]
  38. Oncogene. 2017 Nov 23;36(47):6649-6657 [PMID: 28783172]
  39. J Biol Chem. 2021 Jan-Jun;296:100182 [PMID: 33310703]
  40. Cancer Cell Int. 2020 Nov 5;20(1):539 [PMID: 33292222]
  41. Med Sci (Basel). 2018 Mar 13;6(1): [PMID: 29533973]
  42. Elife. 2018 Jun 01;7: [PMID: 29856313]
  43. Cancers (Basel). 2021 Jul 14;13(14): [PMID: 34298731]
  44. Nat Commun. 2021 Feb 12;12(1):971 [PMID: 33579942]
  45. J Gastrointest Surg. 2023 Jan;27(1):56-66 [PMID: 36127552]
  46. Nat Commun. 2020 Mar 20;11(1):1494 [PMID: 32198421]
  47. J Biol Chem. 2003 Nov 21;278(47):47181-9 [PMID: 12972423]
  48. J Biol Chem. 2000 May 5;275(18):13370-6 [PMID: 10788446]
  49. J Biol Chem. 2001 Dec 14;276(50):46779-91 [PMID: 11577085]
  50. Oncol Lett. 2020 Aug;20(2):1824-1834 [PMID: 32724426]
  51. Biochem J. 2013 Mar 15;450(3):619-28 [PMID: 23330613]
  52. Mol Cell. 2021 Dec 2;81(23):4799-4809.e5 [PMID: 34798056]
  53. Biomolecules. 2020 Mar 25;10(4): [PMID: 32218236]
  54. J Med Chem. 2022 Feb 10;65(3):2059-2077 [PMID: 35041425]
  55. J Biol Chem. 2018 Nov 30;293(48):18736-18745 [PMID: 30333229]
  56. Nat Commun. 2018 Apr 10;9(1):1366 [PMID: 29636450]
  57. J Pharmacol Exp Ther. 1956 Feb;116(2):139-55 [PMID: 13296029]
  58. Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2218373120 [PMID: 36656864]
  59. Cell Biosci. 2020 Dec 11;10(1):144 [PMID: 33308286]

MeSH Term

Female
Humans
Adenosine Triphosphatases
Biological Transport
Breast Neoplasms
MCF-7 Cells
Membrane Transport Proteins
Polyamines
Up-Regulation

Chemicals

Adenosine Triphosphatases
ATP13A4 protein, human
Membrane Transport Proteins
Polyamines

Word Cloud

Created with Highcharts 10.0.0polyamineATP13A4cancercellsMCF7increasedtransportPTScellelevatedbreastuptakePolyaminehumanlevelssystemtransporterspolyaminescandidateresponsiblelineMCF10AhomeostasisdisturbedseveraldiseasesincludinghallmarkedintracellularupregulatedThusfarcontributingyetdescribeddespitefactinhibitorsconsideredtherapytestedwhetherupregulationP5BATPasefamilywell-studiedcomparednon-tumorigenicepithelialfoundpresentedexpressionpreviouslyuncharacterizedP5B-ATPaseactivityFurthermoresensitivecytotoxicitydemonstratedviabilitydeathclonogenicassaysImportantlyoverexpressionWTinducedphenotypesignificantlyhigherBODIPY-labeledsensitivitytoxicityconclusionestablishednewtransportershowedmayplaymajorrolethereforeemergestherapeutictargetanticancerdrugsblockUpregulationDrivesElevatedTransportSystemBreastCancerCellLineP5B-typeATPasesmammalian

Similar Articles

Cited By