Statistical Analysis of Plasma Dynamics in Gyrokinetic Simulations of Stellarator Turbulence.

Aristeides D Papadopoulos, Johan Anderson, Eun-Jin Kim, Michail Mavridis, Heinz Isliker
Author Information
  1. Aristeides D Papadopoulos: School of Electrical and Computer Engineering, National Technical University of Athens, 157 80 Athens, Greece.
  2. Johan Anderson: Department of Space, Earth and Environment, Chalmers University of Technology, SE-412 96 Göteborg, Sweden. ORCID
  3. Eun-Jin Kim: Centre for Fluid & Complex Systems, Coventry University, Coventry CV1 5FB, UK. ORCID
  4. Michail Mavridis: Department of Physics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece. ORCID
  5. Heinz Isliker: Department of Physics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece. ORCID

Abstract

A geometrical method for assessing stochastic processes in plasma turbulence is investigated in this study. The thermodynamic length methodology allows using a Riemannian metric on the phase space; thus, distances between thermodynamic states can be computed. It constitutes a geometric methodology to understand stochastic processes involved in, e.g., order-disorder transitions, where a sudden increase in distance is expected. We consider gyrokinetic simulations of ion-temperature-gradient (ITG)-mode-driven turbulence in the core region of the stellarator W7-X with realistic quasi-isodynamic topologies. In gyrokinetic plasma turbulence simulations, avalanches, e.g., of heat and particles, are often found, and in this work, a novel method for detection is investigated. This new method combines the singular spectrum analysis algorithm with a hierarchical clustering method such that the time series is decomposed into two parts: useful physical information and noise. The informative component of the time series is used for the calculation of the Hurst exponent, the information length, and the dynamic time. Based on these measures, the physical properties of the time series are revealed.

Keywords

References

  1. Phys Rev E. 2019 Sep;100(3-1):033212 [PMID: 31640003]
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 1):012104 [PMID: 19257090]
  3. Phys Rev Lett. 2007 Sep 7;99(10):100602 [PMID: 17930381]
  4. Phys Rev Lett. 2000 Dec 25;85(26 Pt 1):5579-82 [PMID: 11136051]
  5. Phys Rev Lett. 2001 Aug 6;87(6):065001 [PMID: 11497833]
  6. Phys Rev Lett. 2000 Dec 4;85(23):4892-5 [PMID: 11102144]
  7. Phys Rev Lett. 1988 Nov 7;61(19):2205-2208 [PMID: 10039015]
  8. Phys Rev Lett. 2000 Feb 7;84(6):1192-5 [PMID: 11017476]
  9. Entropy (Basel). 2018 Aug 03;20(8): [PMID: 33265663]

Grants

  1. 633053/Eurofusion

Word Cloud

Created with Highcharts 10.0.0timemethodseriesstochasticturbulencegyrokineticsimulationsinformationprocessesplasmainvestigatedthermodynamiclengthmethodologyeganalysisphysicalgeometricalassessingstudyallowsusingRiemannianmetricphasespacethusdistancesstatescancomputedconstitutesgeometricunderstandinvolvedorder-disordertransitionssuddenincreasedistanceexpectedconsiderion-temperature-gradientITG-mode-drivencoreregionstellaratorW7-Xrealisticquasi-isodynamictopologiesavalanchesheatparticlesoftenfoundworknoveldetectionnewcombinessingularspectrumalgorithmhierarchicalclusteringdecomposedtwoparts:usefulnoiseinformativecomponentusedcalculationHurstexponentdynamicBasedmeasurespropertiesrevealedStatisticalAnalysisPlasmaDynamicsGyrokineticSimulationsStellaratorTurbulencedriftwavesgeometrytheory

Similar Articles

Cited By (1)