MitoTrace: A Computational Framework for Analyzing Mitochondrial Variation in Single-Cell RNA Sequencing Data.

Mingqiang Wang, Wankun Deng, David C Samuels, Zhongming Zhao, Lukas M Simon
Author Information
  1. Mingqiang Wang: Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
  2. Wankun Deng: Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. ORCID
  3. David C Samuels: Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA. ORCID
  4. Zhongming Zhao: Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. ORCID
  5. Lukas M Simon: Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA. ORCID

Abstract

Genetic variation in the mitochondrial genome is linked to important biological functions and various human diseases. Recent progress in single-cell genomics has established single-cell RNA sequencing (scRNAseq) as a popular and powerful technique to profile transcriptomics at the cellular level. While most studies focus on deciphering gene expression, polymorphisms including mitochondrial variants can also be readily inferred from scRNAseq. However, limited attention has been paid to investigate the single-cell landscape of mitochondrial variants, despite the rapid accumulation of scRNAseq data in the community. In addition, a diploid context is assumed for most variant calling tools, which is not appropriate for mitochondrial heteroplasmies. Here, we introduce MitoTrace, an R package for the analysis of mitochondrial genetic variation in bulk and scRNAseq data. We applied MitoTrace to several publicly accessible data sets and demonstrated its ability to robustly recover genetic variants from scRNAseq data. We also validated the applicability of MitoTrace to scRNAseq data from diverse platforms. Overall, MitoTrace is a powerful and user-friendly tool to investigate mitochondrial variants from scRNAseq data.

Keywords

References

  1. Nat Protoc. 2014 Jan;9(1):171-81 [PMID: 24385147]
  2. Nat Biotechnol. 2021 Apr;39(4):451-461 [PMID: 32788668]
  3. Bioinformatics. 2021 Dec 7;37(23):4569-4571 [PMID: 33963851]
  4. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  5. Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10654-9 [PMID: 25002485]
  6. Elife. 2019 Apr 09;8: [PMID: 30958261]
  7. Nat Commun. 2017 May 05;8:15081 [PMID: 28474673]
  8. Nat Biotechnol. 2018 Jan;36(1):89-94 [PMID: 29227470]
  9. Cell. 2017 Oct 5;171(2):321-330.e14 [PMID: 28965763]
  10. Genome Biol. 2016 Jan 26;17:13 [PMID: 26813401]
  11. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  12. Nat Commun. 2022 Mar 8;13(1):1205 [PMID: 35260582]
  13. Genome Biol. 2019 Nov 19;20(1):242 [PMID: 31744515]
  14. EMBO Mol Med. 2018 Jun;10(6): [PMID: 29735722]
  15. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  16. Nat Rev Genet. 2015 Sep;16(9):530-42 [PMID: 26281784]
  17. Brief Bioinform. 2016 Mar;17(2):224-32 [PMID: 26249222]
  18. Cell. 2019 Mar 7;176(6):1325-1339.e22 [PMID: 30827679]
  19. Annu Rev Genet. 2005;39:359-407 [PMID: 16285865]
  20. Nat Biotechnol. 2022 Jul;40(7):1030-1034 [PMID: 35210612]
  21. Cell Metab. 2017 Jan 10;25(1):57-71 [PMID: 28094012]
  22. Cell Rep. 2017 Oct 31;21(5):1399-1410 [PMID: 29091775]
  23. Nat Rev Dis Primers. 2016 Oct 20;2:16080 [PMID: 27775730]
  24. Mol Genet Metab. 2015 Sep-Oct;116(1-2):4-12 [PMID: 26095523]
  25. Molecules. 2018 Feb 03;23(2): [PMID: 29401641]
  26. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]

Grants

  1. R01 LM012806/NLM NIH HHS

MeSH Term

Humans
Mitochondria
Genomics
Gene Expression Profiling
Polymorphism, Genetic
Sequence Analysis, RNA

Word Cloud

Created with Highcharts 10.0.0mitochondrialscRNAseqdatasingle-cellvariantsMitoTracevariationRNAgeneticsequencingpowerfulalsoinvestigateRpackageGeneticgenomelinkedimportantbiologicalfunctionsvarioushumandiseasesRecentprogressgenomicsestablishedpopulartechniqueprofiletranscriptomicscellularlevelstudiesfocusdecipheringgeneexpressionpolymorphismsincludingcanreadilyinferredHoweverlimitedattentionpaidlandscapedespiterapidaccumulationcommunityadditiondiploidcontextassumedvariantcallingtoolsappropriateheteroplasmiesintroduceanalysisbulkappliedseveralpubliclyaccessiblesetsdemonstratedabilityrobustlyrecovervalidatedapplicabilitydiverseplatformsOveralluser-friendlytoolMitoTrace:ComputationalFrameworkAnalyzingMitochondrialVariationSingle-CellSequencingDataheteroplasmylineagetracing

Similar Articles

Cited By