PHERI-Phage Host ExploRation Pipeline.

Andrej Baláž, Michal Kajsik, Jaroslav Budiš, Tomáš Szemes, Ján Turňa
Author Information
  1. Andrej Baláž: Geneton Ltd., Ilkovicova 8, 841 04 Bratislava, Slovakia.
  2. Michal Kajsik: Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia. ORCID
  3. Jaroslav Budiš: Geneton Ltd., Ilkovicova 8, 841 04 Bratislava, Slovakia. ORCID
  4. Tomáš Szemes: Geneton Ltd., Ilkovicova 8, 841 04 Bratislava, Slovakia.
  5. Ján Turňa: Science Park, Comenius University, Ilkovicova 8, 841 04 Bratislava, Slovakia.

Abstract

Antibiotic resistance is becoming a common problem in medicine, food, and industry, with multidrug-resistant bacterial strains occurring in all regions. One of the possible future solutions is the use of bacteriophages. Phages are the most abundant form of life in the biosphere, so we can highly likely purify a specific phage against each target bacterium. The identification and consistent characterization of individual phages was a common form of phage work and included determining bacteriophages' host-specificity. With the advent of new modern sequencing methods, there was a problem with the detailed characterization of phages in the environment identified by metagenome analysis. The solution to this problem may be to use a bioinformatic approach in the form of prediction software capable of determining a bacterial host based on the phage whole-genome sequence. The result of our research is the machine learning algorithm-based tool called PHERI. PHERI predicts the suitable bacterial host genus for the purification of individual viruses from different samples. In addition, it can identify and highlight protein sequences that are important for host selection.

Keywords

References

  1. Int J Mol Sci. 2019 Jul 10;20(14): [PMID: 31295925]
  2. Infection. 2019 Aug;47(4):665-668 [PMID: 31102236]
  3. Int J Food Microbiol. 2017 Jul 17;253:1-11 [PMID: 28460269]
  4. Adv Appl Microbiol. 2010;70:217-48 [PMID: 20359459]
  5. Nat Commun. 2019 Nov 29;10(1):5442 [PMID: 31784519]
  6. Environ Int. 2019 Aug;129:488-496 [PMID: 31158595]
  7. Appl Environ Microbiol. 2015 Nov 20;82(3):808-15 [PMID: 26590277]
  8. J Hist Med Allied Sci. 2018 Oct 1;73(4):385-411 [PMID: 30312428]
  9. Nucleic Acids Res. 2002 Apr 1;30(7):1575-84 [PMID: 11917018]
  10. Arch Virol. 2018 Aug;163(8):2037-2046 [PMID: 30039318]
  11. Arch Virol. 2014 Nov;159(11):3013-9 [PMID: 25023334]
  12. Bioinformatics. 2006 Jul 1;22(13):1658-9 [PMID: 16731699]
  13. BMC Genomics. 2014 Nov 27;15:1027 [PMID: 25428721]
  14. Nature. 2017 Apr 6;544(7648):101-104 [PMID: 28355179]
  15. Bioinformatics. 2009 Jun 1;25(11):1422-3 [PMID: 19304878]
  16. Microbiol Resour Announc. 2019 Oct 24;8(43): [PMID: 31649085]
  17. Res Microbiol. 2018 Nov;169(9):540-542 [PMID: 29777836]
  18. PeerJ. 2015 May 28;3:e985 [PMID: 26038737]
  19. Curr Opin Biotechnol. 2011 Apr;22(2):157-63 [PMID: 21115341]
  20. Biotechnol J. 2016 May;11(5):595-600 [PMID: 27008250]
  21. BMC Genomics. 2015 Sep 03;16:664 [PMID: 26335566]
  22. Microbiol Resour Announc. 2023 Apr 18;12(4):e0003423 [PMID: 36995218]
  23. Nucleic Acids Res. 2001 Jan 1;29(1):41-3 [PMID: 11125044]
  24. J Gen Microbiol. 1987 May;133(5):1127-35 [PMID: 3309178]
  25. J Bacteriol. 2019 Sep 6;201(19): [PMID: 31285240]
  26. Virulence. 2014 Jan 1;5(1):226-35 [PMID: 23973944]
  27. Front Microbiol. 2018 Mar 16;9:476 [PMID: 29616000]
  28. Virology. 2017 Jul;507:206-215 [PMID: 28456019]
  29. Viruses. 2018 Jun 20;10(6): [PMID: 29925793]
  30. Annu Rev Genet. 2018 Nov 23;52:445-464 [PMID: 30208287]
  31. Molecules. 2019 Sep 21;24(19): [PMID: 31546630]
  32. Arch Virol. 2019 May;164(5):1383-1391 [PMID: 30880345]
  33. Viruses. 2016 May 04;8(5): [PMID: 27153081]
  34. Methods Mol Biol. 2009;502:227-38 [PMID: 19082559]
  35. Arch Virol. 2012 Sep;157(9):1643-50 [PMID: 22614810]
  36. Nature. 2016 Aug 25;536(7617):425-30 [PMID: 27533034]
  37. PLoS One. 2012;7(10):e42047 [PMID: 23082107]
  38. Appl Environ Microbiol. 2005 Nov;71(11):6554-63 [PMID: 16269681]
  39. J Virol. 2012 Oct;86(20):11392-3 [PMID: 22997416]
  40. Annu Rev Microbiol. 2003;57:641-76 [PMID: 14527294]
  41. Nucleic Acids Res. 2000 Jan 1;28(1):263-6 [PMID: 10592242]
  42. Adv Virus Res. 2012;83:3-40 [PMID: 22748807]
  43. J Glob Antimicrob Resist. 2020 Jun;21:34-41 [PMID: 31604128]
  44. Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12 [PMID: 25348405]
  45. Front Microbiol. 2017 May 31;8:1006 [PMID: 28620370]
  46. Nat Rev Microbiol. 2007 Oct;5(10):801-12 [PMID: 17853907]
  47. Curr Opin Microbiol. 2005 Aug;8(4):473-9 [PMID: 15979388]
  48. BMC Bioinformatics. 2010 Mar 08;11:119 [PMID: 20211023]
  49. J Gen Microbiol. 1983 Aug;129(8):2659-75 [PMID: 6355391]
  50. Nat Med. 2019 May;25(5):730-733 [PMID: 31068712]
  51. Int J Food Microbiol. 2014 Apr 17;176:29-37 [PMID: 24561391]
  52. Lancet Infect Dis. 2019 Jan;19(1):35-45 [PMID: 30292481]
  53. Front Med (Lausanne). 2017 Jul 03;4:94 [PMID: 28717637]
  54. Annu Rev Virol. 2017 Sep 29;4(1):201-219 [PMID: 28961409]
  55. Front Microbiol. 2019 Sep 10;10:1984 [PMID: 31551950]
  56. Sci Rep. 2019 Feb 6;9(1):1527 [PMID: 30728389]
  57. Nat Commun. 2014 Aug 14;5:4542 [PMID: 25119473]
  58. Elife. 2015 Jul 22;4: [PMID: 26200428]
  59. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  60. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  61. Burns. 2006 Aug;32(5):644-6 [PMID: 16781080]
  62. Bioinformatics. 2017 Nov 15;33(22):3648-3651 [PMID: 29036546]
  63. Am J Transplant. 2019 Sep;19(9):2631-2639 [PMID: 31207123]
  64. Nucleic Acids Res. 2018 Jan 4;46(D1):D41-D47 [PMID: 29140468]

Grants

  1. 313011ATR9/Operational Program Integrated Infrastructure

Word Cloud

Created with Highcharts 10.0.0phagehostproblembacterialformcommonusebacteriophagescancharacterizationindividualphagesdeterminingmachinelearningPHERIAntibioticresistancebecomingmedicinefoodindustrymultidrug-resistantstrainsoccurringregionsOnepossiblefuturesolutionsPhagesabundantlifebiospherehighlylikelypurifyspecifictargetbacteriumidentificationconsistentworkincludedbacteriophages'host-specificityadventnewmodernsequencingmethodsdetailedenvironmentidentifiedmetagenomeanalysissolutionmaybioinformaticapproachpredictionsoftwarecapablebasedwhole-genomesequenceresultresearchalgorithm-basedtoolcalledpredictssuitablegenuspurificationvirusesdifferentsamplesadditionidentifyhighlightproteinsequencesimportantselectionPHERI-PhageHostExploRationPipelinealgorithmdetermination

Similar Articles

Cited By