Clinically Evaluated COVID-19 Drugs with Therapeutic Potential for Biological Warfare Agents.

Ido-David Dechtman, Ran Ankory, Keren Sokolinsky, Esther Krasner, Libby Weiss, Yoav Gal
Author Information
  1. Ido-David Dechtman: Pulmonology Department, Edith Wolfson Medical Center, 62 Halochamim Street, Holon 5822012, Israel.
  2. Ran Ankory: The Israel Defense Force Medical Corps, Tel Hashomer, Ramat Gan, Military Post 02149, Israel.
  3. Keren Sokolinsky: Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel Aviv 61909, Israel.
  4. Esther Krasner: Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel Aviv 61909, Israel.
  5. Libby Weiss: Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel Aviv 61909, Israel.
  6. Yoav Gal: Chemical, Biological, Radiological and Nuclear Defense Division, Ministry of Defense, HaKirya, Tel Aviv 61909, Israel.

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak resulted in hundreds of millions of coronavirus cases, as well as millions of deaths worldwide. Coronavirus Disease 2019 (COVID-19), the disease resulting from exposure to this pathogen, is characterized, among other features, by a pulmonary pathology, which can progress to "cytokine storm", acute respiratory distress syndrome (ARDS), respiratory failure and death. Vaccines are the unsurpassed strategy for prevention and protection against the SARS-CoV-2 infection. However, there is still an extremely high number of severely ill people from at-risk populations. This may be attributed to waning immune response, variant-induced breakthrough infections, unvaccinated population, etc. It is therefore of high importance to utilize pharmacological-based treatments, despite the progression of the global vaccination campaign. Until the approval of Paxlovid, an efficient and highly selective anti-SARS-CoV-2 drug, and the broad-spectrum antiviral agent Lagevrio, many pharmacological-based countermeasures were, and still are, being evaluated in clinical trials. Some of these are host-directed therapies (HDTs), which modulate the endogenic response against the virus, and therefore may confer efficient protection against a wide array of pathogens. These could potentially include Biological Warfare Agents (BWAs), exposure to which may lead to mass casualties due to disease severity and a possible lack of efficient treatment. In this review, we assessed the recent literature on drugs under advanced clinical evaluation for COVID-19 with broad spectrum activity, including antiviral agents and HDTs, which may be relevant for future coping with BWAs, as well as with other agents, in particular respiratory infections.

Keywords

References

  1. Expert Opin Drug Saf. 2019 Mar;18(3):219-229 [PMID: 30704314]
  2. Lancet Rheumatol. 2020 Jul;2(7):e393-e400 [PMID: 32835245]
  3. J Virol. 2005 Feb;79(3):1966-9 [PMID: 15650225]
  4. Curr Opin Virol. 2011 Dec;1(6):519-25 [PMID: 22328912]
  5. Nat Commun. 2022 Nov 16;13(1):6992 [PMID: 36385011]
  6. N Engl J Med. 2021 Apr 22;384(16):1491-1502 [PMID: 33631065]
  7. Curr Opin Virol. 2021 Oct;50:17-22 [PMID: 34271264]
  8. JAMA. 2020 Dec 8;324(22):2292-2300 [PMID: 33180097]
  9. Clin Microbiol Rev. 2020 Oct 14;34(1): [PMID: 33055231]
  10. Expert Rev Clin Immunol. 2020 Feb;16(2):207-228 [PMID: 31852268]
  11. Front Med (Lausanne). 2021 Aug 19;8:704666 [PMID: 34490296]
  12. Clin Immunol. 2020 Sep;218:108518 [PMID: 32599278]
  13. Sci Rep. 2021 Jun 1;11(1):11462 [PMID: 34075090]
  14. J Antimicrob Chemother. 2022 Aug 25;77(9):2456-2460 [PMID: 35748613]
  15. J Clin Invest. 2017 Apr 3;127(4):1338-1352 [PMID: 28240606]
  16. Front Microbiol. 2018 Jun 29;9:1446 [PMID: 30008712]
  17. J Infect. 2021 Aug;83(2):237-279 [PMID: 33992687]
  18. Nitric Oxide. 2013 May 31;31:48-53 [PMID: 23562771]
  19. J Virol. 2017 Jul 27;91(16): [PMID: 28615197]
  20. Virus Genes. 2020 Apr;56(2):150-167 [PMID: 32076918]
  21. Toxicol Rep. 2014 Aug 01;1:496-504 [PMID: 28962263]
  22. JAMA Netw Open. 2021 Nov 1;4(11):e2133090 [PMID: 34779847]
  23. J Biosci. 2020;45: [PMID: 32661214]
  24. EClinicalMedicine. 2023 Feb;56:101785 [PMID: 36590789]
  25. Comput Struct Biotechnol J. 2024 Jan 09;24:115-125 [PMID: 38318198]
  26. J Infect Dis. 2016 Sep 15;214(6):970-7 [PMID: 27402776]
  27. J Med Chem. 2012 Aug 23;55(16):7285-9 [PMID: 22783954]
  28. Int Immunopharmacol. 2022 Oct;111:109075 [PMID: 35905562]
  29. Emerg Microbes Infect. 2022 Dec;11(1):195-207 [PMID: 34919035]
  30. Proc Natl Acad Sci U S A. 2020 Aug 11;117(32):18951-18953 [PMID: 32699149]
  31. Antibiotics (Basel). 2022 Feb 09;11(2): [PMID: 35203821]
  32. J Virol. 2007 Sep;81(18):10172-87 [PMID: 17626087]
  33. Br J Anaesth. 2021 Jan;126(1):e44-e46 [PMID: 33138964]
  34. Nature. 2023 Jan;613(7942):130-137 [PMID: 36517599]
  35. J Clin Med. 2021 Sep 28;10(19): [PMID: 34640480]
  36. Pharmacol Res. 2020 Sep;159:105051 [PMID: 32603772]
  37. Eur Respir J. 2022 Dec 15;60(6): [PMID: 35896211]
  38. Emerg Microbes Infect. 2020 Dec;9(1):1418-1428 [PMID: 32529952]
  39. Emerg Microbes Infect. 2015 May;4(5):e28 [PMID: 26060601]
  40. Lancet. 2021 May 01;397(10285):1637-1645 [PMID: 33933206]
  41. JAMA Intern Med. 2021 Jan 1;181(1):41-51 [PMID: 33080002]
  42. Lancet Respir Med. 2021 Jul;9(7):763-772 [PMID: 33844996]
  43. Lancet Respir Med. 2021 Sep;9(9):957-968 [PMID: 34147142]
  44. Front Med (Lausanne). 2022 Apr 13;9:844728 [PMID: 35492335]
  45. Cell Host Microbe. 2023 Jan 11;31(1):9-17.e3 [PMID: 36476380]
  46. Front Oncol. 2015 Apr 07;5:75 [PMID: 25905039]
  47. Cell Mol Life Sci. 2022 Feb 20;79(3):142 [PMID: 35187617]
  48. Sci Rep. 2016 Jun 02;6:27148 [PMID: 27250526]
  49. Drugs. 2021 Dec;81(18):2081-2089 [PMID: 34851510]
  50. PLoS One. 2018 Jan 31;13(1):e0191805 [PMID: 29385181]
  51. J Med Chem. 2019 Jul 25;62(14):6734-6750 [PMID: 31251599]
  52. Gastroenterology. 2009 Nov;137(5):1827-35 [PMID: 19664635]
  53. Lancet Reg Health West Pac. 2023 May;34:100716 [PMID: 37256206]
  54. Viral Immunol. 2021 Dec;34(10):679-688 [PMID: 34882013]
  55. N Engl J Med. 2022 Feb 10;386(6):509-520 [PMID: 34914868]
  56. Lancet Healthy Longev. 2021 Jan;2(1):e34-e41 [PMID: 33521772]
  57. Int J Infect Dis. 2012 Jun;16(6):e436-41 [PMID: 22486858]
  58. Nat Rev Drug Discov. 2018 Jan;17(1):35-56 [PMID: 28935918]
  59. Emerg Microbes Infect. 2020 Dec;9(1):1123-1130 [PMID: 32475230]
  60. Physiol Rep. 2015 Nov;3(11): [PMID: 26620257]
  61. Cell Metab. 2022 Mar 1;34(3):424-440.e7 [PMID: 35150639]
  62. J Virol. 2016 Sep 12;90(19):8924-33 [PMID: 27466418]
  63. Lancet Respir Med. 2021 Dec;9(12):1419-1426 [PMID: 34672950]
  64. Antimicrob Agents Chemother. 2021 Mar 1;65(5): [PMID: 33649113]
  65. Mol Psychiatry. 2021 Dec;26(12):7098-7099 [PMID: 34385600]
  66. Science. 2021 Feb 26;371(6532):926-931 [PMID: 33495306]
  67. Sci Rep. 2021 Apr 22;11(1):8743 [PMID: 33888740]
  68. Geroscience. 2021 Jun;43(3):1093-1112 [PMID: 32902818]
  69. Clin Microbiol Rev. 2021 Dec 15;34(4):e0006421 [PMID: 34612662]
  70. Lancet Reg Health Southeast Asia. 2022 Aug;3:100036 [PMID: 35784831]
  71. J Med Chem. 2022 Jan 27;65(2):893-921 [PMID: 33539089]
  72. Br J Clin Pharmacol. 2022 Jun;88(6):2642-2656 [PMID: 35122284]
  73. Front Endocrinol (Lausanne). 2021 Jul 22;12:587801 [PMID: 34367059]
  74. J Clin Med. 2021 Aug 09;10(16): [PMID: 34441802]
  75. Clin Infect Dis. 2021 Nov 16;73(10):1849-1856 [PMID: 33709142]
  76. Lancet Reg Health Am. 2022 Feb;6:100142 [PMID: 34927127]
  77. Free Radic Biol Med. 2021 Feb 1;163:153-162 [PMID: 33347987]
  78. J Med Virol. 2021 Jan;93(1):250-256 [PMID: 32592501]
  79. N Engl J Med. 2021 Jul 29;385(5):406-415 [PMID: 34133856]
  80. Biomed Pharmacother. 2021 Dec;144:112230 [PMID: 34628168]
  81. Eur Respir J. 2023 Feb 2;61(2): [PMID: 36229048]
  82. EClinicalMedicine. 2022 Jul;49:101489 [PMID: 35677732]
  83. Front Pharmacol. 2021 Apr 20;12:652688 [PMID: 33959018]
  84. J Infect Public Health. 2016 May-Jun;9(3):227-30 [PMID: 27095301]
  85. EClinicalMedicine. 2021 Jul;37:100981 [PMID: 34222847]
  86. Nat Commun. 2021 Feb 10;12(1):915 [PMID: 33568665]
  87. Lancet Infect Dis. 2023 Oct;23(10):1119-1129 [PMID: 37302406]
  88. Clin Infect Dis. 2023 Feb 8;76(3):e342-e349 [PMID: 35653428]
  89. N Engl J Med. 2021 Mar 4;384(9):795-807 [PMID: 33306283]
  90. Diabetes Metab Syndr. 2020 Jul - Aug;14(4):395-403 [PMID: 32334395]
  91. Circulation. 2012 Dec 4;126(23):2728-38 [PMID: 23099479]
  92. JAMA Netw Open. 2021 Nov 1;4(11):e2136510 [PMID: 34779851]
  93. Crit Care. 2022 Oct 3;26(1):304 [PMID: 36192801]
  94. Elife. 2021 Mar 08;10: [PMID: 33682678]
  95. Lancet Respir Med. 2021 May;9(5):522-532 [PMID: 33676590]
  96. Cell Host Microbe. 2020 Jun 10;27(6):870-878 [PMID: 32464097]
  97. Nature. 2016 Mar 17;531(7594):381-5 [PMID: 26934220]
  98. Nat Microbiol. 2021 Jan;6(1):11-18 [PMID: 33273742]
  99. Ann Rheum Dis. 2021 Jul;80(7):865-875 [PMID: 33741556]
  100. EMBO Mol Med. 2016 Sep 01;8(9):1099-112 [PMID: 27520969]
  101. Ann Intern Med. 2023 May;176(5):667-675 [PMID: 37068273]
  102. Nature. 2020 Dec;588(7836):146-150 [PMID: 32726800]
  103. J Pers Med. 2021 Jul 16;11(7): [PMID: 34357135]
  104. BMC Microbiol. 2022 Sep 12;22(1):215 [PMID: 36089583]
  105. Lancet Respir Med. 2022 Apr;10(4):e34-e35 [PMID: 35183270]
  106. Sci Rep. 2022 Apr 6;12(1):5758 [PMID: 35388061]
  107. Int Immunopharmacol. 2012 May;13(1):23-7 [PMID: 22430099]
  108. Virol J. 2018 Nov 26;15(1):182 [PMID: 30477508]
  109. Lancet Respir Med. 2022 Dec;10(12):1137-1146 [PMID: 36087611]
  110. Curr Drug Discov Technol. 2018;15(3):201-213 [PMID: 28748751]
  111. Antimicrob Agents Chemother. 2022 Jan 18;66(1):e0127521 [PMID: 34780267]
  112. Diabetes Res Clin Pract. 2021 Aug;178:108977 [PMID: 34302912]
  113. Nat Rev Immunol. 2014 Jan;14(1):36-49 [PMID: 24362405]
  114. J Exp Med. 2020 Jan 6;217(1): [PMID: 31611249]
  115. Front Physiol. 2021 Oct 07;12:749770 [PMID: 34690817]
  116. Antiviral Res. 2014 Oct;110:94-103 [PMID: 25108173]
  117. Eur Respir J. 2008 Jul;32(1):232-5 [PMID: 18591341]
  118. N Engl J Med. 2023 Feb 9;388(6):518-528 [PMID: 36780676]
  119. J Clin Invest. 1997 Jun 15;99(12):2818-25 [PMID: 9185502]
  120. Infection. 2021 Jun;49(3):401-410 [PMID: 33389708]
  121. Obesity (Silver Spring). 2020 Jul;28(7):1195-1199 [PMID: 32271993]
  122. Eur Respir J. 2021 Jul 8;58(1): [PMID: 33361100]
  123. Mol Psychiatry. 2022 Jan;27(1):307-314 [PMID: 34608263]
  124. Proc Natl Acad Sci U S A. 2022 Feb 22;119(8): [PMID: 35177474]
  125. Am J Respir Crit Care Med. 2013 Nov 1;188(9):1171-3 [PMID: 24180451]
  126. J Virol. 2022 Jun 8;96(11):e0036422 [PMID: 35588276]
  127. Nat Med. 2020 Jul;26(7):1017-1032 [PMID: 32651579]
  128. Toxicol Appl Pharmacol. 2004 Aug 15;199(1):71-84 [PMID: 15289092]
  129. Sci Rep. 2021 Sep 21;11(1):18721 [PMID: 34548527]
  130. Immunity. 2021 Jul 13;54(7):1463-1477.e11 [PMID: 34115964]
  131. Lancet Rheumatol. 2021 Oct;3(10):e690-e697 [PMID: 34396156]
  132. Virus Res. 2023 Jan 2;323:199010 [PMID: 36417940]
  133. N Engl J Med. 2022 Aug 18;387(7):599-610 [PMID: 36070710]
  134. Microb Pathog. 2018 Oct;123:368-371 [PMID: 30056107]
  135. Int J Mol Sci. 2022 Mar 22;23(7): [PMID: 35408808]
  136. Microbiol Mol Biol Rev. 2013 Jun;77(2):253-66 [PMID: 23699257]
  137. Lancet Reg Health Eur. 2021 May;4:100084 [PMID: 33842908]
  138. Sci Immunol. 2021 Mar 10;6(57): [PMID: 33692097]
  139. Eur Cytokine Netw. 2020 Jun 1;31(2):44-49 [PMID: 32933891]
  140. EMBO Mol Med. 2020 Aug 7;12(8):e12697 [PMID: 32473600]
  141. Lancet. 2022 Jul 30;400(10349):359-368 [PMID: 35908569]
  142. Lancet Respir Med. 2022 Sep;10(9):888-899 [PMID: 35617986]
  143. Nat Rev Immunol. 2023 Feb;23(2):121-133 [PMID: 35672482]
  144. Virol J. 2022 Mar 19;19(1):49 [PMID: 35305698]
  145. J Immunol. 2009 Jul 15;183(2):1419-26 [PMID: 19561099]
  146. PLoS One. 2013 Dec 19;8(12):e85231 [PMID: 24367707]
  147. Lancet Glob Health. 2022 Jan;10(1):e42-e51 [PMID: 34717820]
  148. Lancet Respir Med. 2021 Feb;9(2):196-206 [PMID: 33189161]
  149. Lancet Rheumatol. 2020 Jun;2(6):e325-e331 [PMID: 32501454]
  150. Circ Res. 2016 Aug 19;119(5):652-65 [PMID: 27418629]
  151. JAMA. 2021 Aug 10;326(6):499-518 [PMID: 34228774]
  152. NEJM Evid. 2022 Sep;1(9):EVIDoa2200145 [PMID: 38319812]
  153. Drugs Today (Barc). 2021 Jul;57(7):455-473 [PMID: 34268533]

Word Cloud

Created with Highcharts 10.0.0respiratoryCOVID-19maySARS-CoV-2efficientantiviralacutesyndromecoronavirusmillionswelldiseaseexposureprotectionstillhighresponseinfectionsthereforepharmacological-basedclinicalhost-directedHDTsBiologicalWarfareAgentsBWAstreatmentdrugsagentssevere2outbreakresultedhundredscasesdeathsworldwideCoronavirusDisease2019resultingpathogencharacterizedamongfeaturespulmonarypathologycanprogress"cytokinestorm"distressARDSfailuredeathVaccinesunsurpassedstrategypreventioninfectionHoweverextremelynumberseverelyillpeopleat-riskpopulationsattributedwaningimmunevariant-inducedbreakthroughunvaccinatedpopulationetcimportanceutilizetreatmentsdespiteprogressionglobalvaccinationcampaignapprovalPaxlovidhighlyselectiveanti-SARS-CoV-2drugbroad-spectrumagentLagevriomanycountermeasuresevaluatedtrialstherapiesmodulateendogenicvirusconferwidearraypathogenspotentiallyincludeleadmasscasualtiesdueseveritypossiblelackreviewassessedrecentliteratureadvancedevaluationbroadspectrumactivityincludingrelevantfuturecopingparticularClinicallyEvaluatedDrugsTherapeuticPotentialtherapy

Similar Articles

Cited By