The Microbial Connection to Sustainable Agriculture.

Kalaivani Nadarajah, Nur Sabrina Natasha Abdul Rahman
Author Information
  1. Kalaivani Nadarajah: Department of Biological Sciences and Biotechnology, Faculty of Sciences and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia. ORCID
  2. Nur Sabrina Natasha Abdul Rahman: Department of Biological Sciences and Biotechnology, Faculty of Sciences and Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia. ORCID

Abstract

Microorganisms are an important element in modeling sustainable agriculture. Their role in soil fertility and health is crucial in maintaining plants' growth, development, and yield. Further, microorganisms impact agriculture negatively through disease and emerging diseases. Deciphering the extensive functionality and structural diversity within the plant-soil microbiome is necessary to effectively deploy these organisms in sustainable agriculture. Although both the plant and soil microbiome have been studied over the decades, the efficiency of translating the laboratory and greenhouse findings to the field is largely dependent on the ability of the inoculants or beneficial microorganisms to colonize the soil and maintain stability in the ecosystem. Further, the plant and its environment are two variables that influence the plant and soil microbiome's diversity and structure. Thus, in recent years, researchers have looked into microbiome engineering that would enable them to modify the microbial communities in order to increase the efficiency and effectiveness of the inoculants. The engineering of environments is believed to support resistance to biotic and abiotic stressors, plant fitness, and productivity. Population characterization is crucial in microbiome manipulation, as well as in the identification of potential biofertilizers and biocontrol agents. Next-generation sequencing approaches that identify both culturable and non-culturable microbes associated with the soil and plant microbiome have expanded our knowledge in this area. Additionally, genome editing and multidisciplinary omics methods have provided scientists with a framework to engineer dependable and sustainable microbial communities that support high yield, disease resistance, nutrient cycling, and management of stressors. In this review, we present an overview of the role of beneficial microbes in sustainable agriculture, microbiome engineering, translation of this technology to the field, and the main approaches used by laboratories worldwide to study the plant-soil microbiome. These initiatives are important to the advancement of green technologies in agriculture.

Keywords

References

  1. Phytopathology. 2016 Nov;106(11):1359-1365 [PMID: 27454702]
  2. Nature. 2015 Dec 17;528(7582):364-9 [PMID: 26633631]
  3. Trends Ecol Evol. 2018 Dec;33(12):926-935 [PMID: 30266244]
  4. Appl Environ Microbiol. 2011 Jun;77(11):3846-52 [PMID: 21460107]
  5. Front Microbiol. 2015 Sep 09;6:937 [PMID: 26441873]
  6. Front Microbiol. 2021 Nov 30;12:780458 [PMID: 34917058]
  7. Plants (Basel). 2020 Jan 13;9(1): [PMID: 31940996]
  8. Nat Commun. 2019 Jul 31;10(1):3430 [PMID: 31366919]
  9. Appl Plant Sci. 2020 Apr 15;8(4):e11334 [PMID: 32351795]
  10. Front Microbiol. 2020 Jan 15;10:3007 [PMID: 32010086]
  11. Front Plant Sci. 2022 Apr 26;13:858842 [PMID: 35557712]
  12. Curr Res Microb Sci. 2021 Dec 20;3:100094 [PMID: 35024641]
  13. Curr Microbiol. 2019 Jul;76(7):855-862 [PMID: 31073734]
  14. Can J Microbiol. 2019 Sep;65(9):642-652 [PMID: 31241350]
  15. Science. 2015 Aug 21;349(6250):860-4 [PMID: 26184915]
  16. PLoS One. 2014 Jan 08;9(1):e84469 [PMID: 24416233]
  17. Trends Plant Sci. 2017 Jul;22(7):583-595 [PMID: 28549621]
  18. Nature. 2012 Jun 13;486(7402):207-14 [PMID: 22699609]
  19. Trends Biotechnol. 2020 Dec;38(12):1385-1396 [PMID: 32451122]
  20. Microorganisms. 2021 Nov 27;9(12): [PMID: 34946047]
  21. J Adv Res. 2019 Apr 19;19:15-27 [PMID: 31341666]
  22. Trends Plant Sci. 2013 Oct;18(10):539-45 [PMID: 23871659]
  23. Front Plant Sci. 2017 May 23;8:763 [PMID: 28588588]
  24. Int J Mol Sci. 2022 Aug 12;23(16): [PMID: 36012261]
  25. Microorganisms. 2022 Jul 28;10(8): [PMID: 36013946]
  26. Plants (Basel). 2022 Sep 19;11(18): [PMID: 36145839]
  27. World J Microbiol Biotechnol. 2012 Apr;28(4):1327-50 [PMID: 22805914]
  28. Front Plant Sci. 2021 Jun 04;12:670861 [PMID: 34149769]
  29. Planta. 2019 Aug;250(2):395-412 [PMID: 31236698]
  30. Annu Rev Microbiol. 2019 Sep 8;73:69-88 [PMID: 31091418]
  31. PeerJ. 2022 Aug 17;10:e13782 [PMID: 35996668]
  32. Biotechnol Bioeng. 2016 May;113(5):930-43 [PMID: 26460902]
  33. Front Microbiol. 2021 May 28;12:635917 [PMID: 34122359]
  34. FEMS Microbiol Rev. 2013 Sep;37(5):634-63 [PMID: 23790204]
  35. Plant Physiol. 2019 May;180(1):26-38 [PMID: 30867331]
  36. Int J Microbiol. 2016;2016:5472601 [PMID: 27688771]
  37. Biology (Basel). 2022 Dec 07;11(12): [PMID: 36552290]
  38. Appl Environ Microbiol. 2017 May 17;83(11): [PMID: 28341678]
  39. PLoS Biol. 2019 Aug 30;17(8):e3000356 [PMID: 31469824]
  40. Microbiol Res. 2016 Feb;183:92-9 [PMID: 26805622]
  41. Front Plant Sci. 2022 Oct 06;13:923880 [PMID: 36275556]
  42. J Chem Ecol. 2013 Jul;39(7):1007-18 [PMID: 23881442]
  43. ISME J. 2012 Aug;6(8):1621-4 [PMID: 22402401]
  44. New Phytol. 2015 Jun;206(4):1196-206 [PMID: 25655016]
  45. Saudi J Biol Sci. 2016 Jan;23(1):79-86 [PMID: 26858542]
  46. Microorganisms. 2021 Jan 07;9(1): [PMID: 33430332]
  47. Mol Plant Microbe Interact. 2018 Oct;31(10):982-994 [PMID: 29547355]
  48. Front Microbiol. 2020 Feb 19;11:136 [PMID: 32140140]
  49. Physiol Mol Biol Plants. 2021 Jan;27(1):165-179 [PMID: 33627969]
  50. Microbiol Res. 2019 Apr;221:36-49 [PMID: 30825940]
  51. J Exp Bot. 2020 Jun 26;71(13):3878-3901 [PMID: 32157287]
  52. Front Plant Sci. 2023 Jan 12;13:1101862 [PMID: 36714780]
  53. Can J Microbiol. 2020 Jul;66(7):413-433 [PMID: 32396748]
  54. Plant Cell Physiol. 2019 Jul 1;60(7):1405-1419 [PMID: 31076771]
  55. Front Microbiol. 2020 Oct 23;11:534786 [PMID: 33193124]
  56. Microbiome. 2020 Jan 18;8(1):4 [PMID: 31954405]
  57. Int J Mol Sci. 2023 Apr 10;24(8): [PMID: 37108166]
  58. Microbiome. 2022 Jul 16;10(1):108 [PMID: 35841078]
  59. Curr Opin Plant Biol. 2023 Feb;71:102316 [PMID: 36442442]
  60. Front Plant Sci. 2018 Aug 17;9:1205 [PMID: 30174681]
  61. Elife. 2020 Nov 19;9: [PMID: 33211006]
  62. Mol Plant Microbe Interact. 2012 Feb;25(2):139-50 [PMID: 21995763]
  63. Microbiol Res. 2014 Jul-Aug;169(7-8):561-9 [PMID: 24268182]
  64. Toxics. 2022 Aug 19;10(8): [PMID: 36006163]
  65. Microorganisms. 2022 Aug 29;10(9): [PMID: 36144341]
  66. Appl Environ Microbiol. 2013 Dec;79(23):7428-38 [PMID: 24056471]
  67. Plants (Basel). 2023 Feb 17;12(4): [PMID: 36840260]
  68. Funct Integr Genomics. 2015 Mar;15(2):141-61 [PMID: 25722247]
  69. Science. 2020 Jan 31;367(6477):573-576 [PMID: 32001655]
  70. World J Microbiol Biotechnol. 2017 Oct 6;33(11):197 [PMID: 28986676]
  71. ISME J. 2012 Jul;6(7):1378-90 [PMID: 22189496]
  72. Curr Genomics. 2020 Sep;21(6):429-443 [PMID: 33093805]
  73. Trends Plant Sci. 2020 Dec;25(12):1194-1202 [PMID: 32830043]
  74. Nat Commun. 2014 Nov 10;5:5320 [PMID: 25382143]
  75. Plant Physiol. 2014 Oct;166(2):689-700 [PMID: 25059708]
  76. Physiol Plant. 2015 Jan;153(1):79-90 [PMID: 24796562]
  77. Sci Rep. 2020 Jan 29;10(1):1452 [PMID: 31996781]
  78. Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):1148-1159 [PMID: 31806755]
  79. Nat Commun. 2022 Oct 7;13(1):5913 [PMID: 36207301]
  80. PLoS One. 2019 Dec 4;14(12):e0225933 [PMID: 31800619]
  81. Scientifica (Cairo). 2012;2012:963401 [PMID: 24278762]
  82. Soil Biol Biochem. 2019 Sep;136:107521 [PMID: 31700196]
  83. Int J Environ Res Public Health. 2022 Mar 07;19(5): [PMID: 35270832]
  84. J Theor Biol. 1998 Jan 7;190(1):63-8 [PMID: 9473391]
  85. Plant Cell Environ. 2019 Jan;42(1):20-40 [PMID: 29645277]
  86. J Appl Microbiol. 2020 Feb;128(2):544-555 [PMID: 31606919]
  87. Front Plant Sci. 2022 Oct 21;13:999866 [PMID: 36340355]
  88. ISME J. 2013 Dec;7(12):2248-58 [PMID: 23864127]
  89. Front Microbiol. 2019 Aug 13;10:1779 [PMID: 31456759]
  90. Trends Plant Sci. 2020 Oct;25(10):1017-1029 [PMID: 32467065]
  91. Sci Rep. 2019 Dec 12;9(1):18947 [PMID: 31831810]
  92. Front Microbiol. 2022 May 09;13:870413 [PMID: 35615507]
  93. Front Plant Sci. 2021 Apr 12;11:610065 [PMID: 33912198]
  94. Front Microbiol. 2019 Feb 26;10:302 [PMID: 30873135]
  95. Fungal Genet Biol. 2019 May;126:17-24 [PMID: 30738140]
  96. Chem Soc Rev. 2018 Mar 5;47(5):1652-1704 [PMID: 29218336]
  97. Front Microbiol. 2020 Nov 26;11:542053 [PMID: 33324354]
  98. Plant Physiol. 2007 Aug;144(4):1763-76 [PMID: 17600134]
  99. FEMS Microbiol Ecol. 2020 Jun 1;96(6): [PMID: 32275297]
  100. Biol Proced Online. 2022 Nov 19;24(1):18 [PMID: 36402995]
  101. Rice (N Y). 2016 Dec;9(1):44 [PMID: 27576685]
  102. J Adv Res. 2019 Mar 20;19:29-37 [PMID: 31341667]
  103. Curr Issues Mol Biol. 2023 Jan 19;45(2):918-935 [PMID: 36826004]
  104. Int J Mol Sci. 2021 Jun 25;22(13): [PMID: 34202205]
  105. Mol Plant. 2017 Mar 6;10(3):359-374 [PMID: 28039028]
  106. ISME J. 2021 Nov;15(11):3181-3194 [PMID: 33980999]
  107. Microb Biotechnol. 2017 Sep;10(5):999-1003 [PMID: 28840959]
  108. Nat Microbiol. 2020 Feb;5(2):314-330 [PMID: 31844298]
  109. Front Plant Sci. 2020 Dec 15;11:576078 [PMID: 33384700]
  110. Front Microbiol. 2017 Oct 31;8:2104 [PMID: 29163398]
  111. Funct Integr Genomics. 2023 Feb 8;23(1):57 [PMID: 36752963]
  112. Genes (Basel). 2018 Jul 06;9(7): [PMID: 29986428]
  113. Sci Rep. 2019 Dec 27;9(1):19836 [PMID: 31882627]
  114. Int J Mol Sci. 2021 Aug 21;22(16): [PMID: 34445742]
  115. Nat Rev Microbiol. 2020 Nov;18(11):601-602 [PMID: 33037425]
  116. Microbiome. 2020 May 17;8(1):66 [PMID: 32418544]
  117. Sci Rep. 2019 Feb 14;9(1):2097 [PMID: 30765803]
  118. Trends Plant Sci. 2009 Jan;14(1):1-4 [PMID: 19056309]
  119. PLoS One. 2013;8(3):e58640 [PMID: 23516524]
  120. Proc Natl Acad Sci U S A. 1999 May 25;96(11):5995-6000 [PMID: 10339530]
  121. ISME J. 2021 May;15(5):1420-1433 [PMID: 33349652]
  122. PLoS Biol. 2017 Mar 28;15(3):e2001793 [PMID: 28350798]
  123. Science. 2019 Nov 1;366(6465):606-612 [PMID: 31672892]
  124. Int J Mol Sci. 2021 Sep 29;22(19): [PMID: 34638870]
  125. Biology (Basel). 2022 Jul 07;11(7): [PMID: 36101403]
  126. New Phytol. 2022 Jun;234(6):1945-1950 [PMID: 34877653]
  127. Sci Adv. 2019 Sep 25;5(9):eaaw0759 [PMID: 31579818]
  128. Front Microbiol. 2016 Nov 18;7:1785 [PMID: 27917154]
  129. Microbiol Res. 2020 May;235:126439 [PMID: 32097862]
  130. Plants (Basel). 2023 Jan 15;12(2): [PMID: 36679113]
  131. Front Genet. 2019 Jan 22;9:637 [PMID: 30723493]
  132. Plant Biotechnol J. 2014 Dec;12(9):1193-206 [PMID: 25431199]
  133. Plants (Basel). 2022 Oct 10;11(19): [PMID: 36235530]
  134. J Exp Bot. 2020 Mar 25;71(6):2198-2209 [PMID: 31912143]
  135. Front Plant Sci. 2013 Sep 17;4:356 [PMID: 24062756]
  136. PLoS One. 2019 Feb 12;14(2):e0211775 [PMID: 30753229]
  137. Am J Bot. 2020 Jun;107(6):941-949 [PMID: 32533589]
  138. Annu Rev Genet. 2016 Nov 23;50:211-234 [PMID: 27648643]
  139. Front Microbiol. 2019 Jun 27;10:1455 [PMID: 31316489]
  140. Nat Commun. 2018 Nov 20;9(1):4894 [PMID: 30459421]
  141. Nat Rev Microbiol. 2020 Nov;18(11):607-621 [PMID: 32788714]
  142. Can J Microbiol. 2019 Feb;65(2):91-104 [PMID: 30226998]
  143. BMC Plant Biol. 2016 Apr 14;16:86 [PMID: 27079791]
  144. Front Microbiol. 2022 Sep 20;13:1021064 [PMID: 36204634]
  145. Rice (N Y). 2016 Dec;9(1):59 [PMID: 27830537]
  146. Science. 2019 May 10;364(6440): [PMID: 31073042]
  147. New Phytol. 2022 Jun;234(6):1951-1959 [PMID: 35118660]
  148. BMC Ecol Evol. 2021 Nov 5;21(1):200 [PMID: 34740329]
  149. Int J Mol Sci. 2021 Sep 27;22(19): [PMID: 34638728]
  150. Molecules. 2016 Apr 29;21(5): [PMID: 27136521]
  151. PLoS Pathog. 2019 Jun 13;15(6):e1007740 [PMID: 31194849]
  152. J Exp Bot. 2016 Jan;67(1):47-60 [PMID: 26428061]
  153. Biology (Basel). 2021 May 27;10(6): [PMID: 34072072]
  154. Nat Rev Microbiol. 2018 Sep;16(9):567-576 [PMID: 29789680]
  155. Environ Microbiol. 2018 Jan;20(1):124-140 [PMID: 29266641]
  156. Microbes Environ. 2015;30(1):63-9 [PMID: 25740621]
  157. Saudi J Biol Sci. 2019 Mar;26(3):614-624 [PMID: 30899180]
  158. Front Microbiol. 2020 Jul 03;11:1298 [PMID: 32719660]
  159. Sci Rep. 2016 Jun 30;6:28774 [PMID: 27358031]
  160. Metabolites. 2021 May 24;11(6): [PMID: 34074032]
  161. 3 Biotech. 2015 Aug;5(4):355-377 [PMID: 28324544]
  162. Int J Mol Sci. 2022 Feb 21;23(4): [PMID: 35216487]
  163. Nat Methods. 2013 Oct;10(10):999-1002 [PMID: 23995388]
  164. PLoS One. 2016 Mar 24;11(3):e0152478 [PMID: 27011317]
  165. 3 Biotech. 2018 Jul;8(7):302 [PMID: 30002992]
  166. Int J Environ Res Public Health. 2018 Mar 23;15(4): [PMID: 29570619]
  167. Front Microbiol. 2021 Oct 21;12:744897 [PMID: 34745045]

Grants

  1. FRGS/1/2019/STG03/UKM/01/2/Ministry of Education Malaysia

Word Cloud

Created with Highcharts 10.0.0microbiomeagriculturesoilplantsustainableengineeringbeneficialimportantrolecrucialyieldmicroorganismsdiseasediversityplant-soilorganismsefficiencyfieldinoculantsmicrobialcommunitiessupportresistancestressorsapproachesmicrobesmultidisciplinaryomicstechnologiesMicroorganismselementmodelingfertilityhealthmaintainingplants'growthdevelopmentimpactnegativelyemergingdiseasesDecipheringextensivefunctionalitystructuralwithinnecessaryeffectivelydeployAlthoughstudieddecadestranslatinglaboratorygreenhousefindingslargelydependentabilitycolonizemaintainstabilityecosystemenvironmenttwovariablesinfluencemicrobiome'sstructureThusrecentyearsresearcherslookedenablemodifyorderincreaseeffectivenessenvironmentsbelievedbioticabioticfitnessproductivityPopulationcharacterizationmanipulationwellidentificationpotentialbiofertilizersbiocontrolagentsNext-generationsequencingidentifyculturablenon-culturableassociatedexpandedknowledgeareaAdditionallygenomeeditingmethodsprovidedscientistsframeworkengineerdependablehighnutrientcyclingmanagementreviewpresentoverviewtranslationtechnologymainusedlaboratoriesworldwidestudyinitiativesadvancementgreenMicrobialConnectionSustainableAgriculturebiocontrolsbiofertilizer

Similar Articles

Cited By