In-Grain Ferroelectric Switching in Sub-5 nm Thin Al Sc N Films at 1 V.

Georg Schönweger, Niklas Wolff, Md Redwanul Islam, Maike Gremmel, Adrian Petraru, Lorenz Kienle, Hermann Kohlstedt, Simon Fichtner
Author Information
  1. Georg Schönweger: Department of Electrical and Information Engineering, Kiel University, Kaiserstrasse 2, D-24143, Kiel, Germany. ORCID
  2. Niklas Wolff: Department of Material Science, Kiel University, Kaiserstrasse 2, D-24143, Kiel, Germany. ORCID
  3. Md Redwanul Islam: Department of Material Science, Kiel University, Kaiserstrasse 2, D-24143, Kiel, Germany. ORCID
  4. Maike Gremmel: Department of Material Science, Kiel University, Kaiserstrasse 2, D-24143, Kiel, Germany.
  5. Adrian Petraru: Department of Electrical and Information Engineering, Kiel University, Kaiserstrasse 2, D-24143, Kiel, Germany. ORCID
  6. Lorenz Kienle: Department of Material Science, Kiel University, Kaiserstrasse 2, D-24143, Kiel, Germany. ORCID
  7. Hermann Kohlstedt: Department of Electrical and Information Engineering, Kiel University, Kaiserstrasse 2, D-24143, Kiel, Germany. ORCID
  8. Simon Fichtner: Fraunhofer Institute for Silicon Technology (ISIT), Fraunhoferstr. 1, D-25524, Itzehoe, Germany. ORCID

Abstract

Analog switching in ferroelectric devices promises neuromorphic computing with the highest energy efficiency if limited device scalability can be overcome. To contribute to a solution, one reports on the ferroelectric switching characteristics of sub-5 nm thin Al Sc N films grown on Pt/Ti/SiO /Si and epitaxial Pt/GaN/sapphire templates by sputter-deposition. In this context, the study focuses on the following major achievements compared to previously available wurtzite-type ferroelectrics: 1) Record low switching voltages down to 1 V are achieved, which is in a range that can be supplied by standard on-chip voltage sources. 2) Compared to the previously investigated deposition of ultrathin Al Sc N films on epitaxial templates, a significantly larger coercive field (E ) to breakdown field ratio is observed for Al Sc N films grown on silicon substrates, the technologically most relevant substrate-type. 3) The formation of true ferroelectric domains in wurtzite-type materials is for the first time demonstrated on the atomic scale by scanning transmission electron microscopy (STEM) investigations of a sub-5 nm thin partially switched film. The direct observation of inversion domain boundaries (IDB) within single nm-sized grains supports the theory of a gradual domain-wall driven switching process in wurtzite-type ferroelectrics. Ultimately, this should enable the analog switching necessary for mimicking neuromorphic concepts also in highly scaled devices.

Keywords

References

  1. ACS Appl Mater Interfaces. 2017 Feb 1;9(4):3792-3798 [PMID: 28071052]
  2. Phys Rev Lett. 2000 Jan 3;84(1):175-8 [PMID: 11015863]
  3. ACS Appl Mater Interfaces. 2023 Sep 6;15(35):41606-41613 [PMID: 37610983]
  4. Nano Lett. 2012 May 9;12(5):2579-86 [PMID: 22493937]
  5. Ultramicroscopy. 2016 Jan;160:110-117 [PMID: 26479323]
  6. Adv Sci (Weinh). 2023 Sep;10(25):e2302296 [PMID: 37382398]
  7. Nanoscale Horiz. 2023 May 2;8(5):616-623 [PMID: 36945876]

Grants

  1. 16ES1053/Bundesministerium für Bildung und Forschung
  2. CRC 1461/Deutsche Forschungsgemeinschaft
  3. CRC 1261/Deutsche Forschungsgemeinschaft
  4. 458372836/Deutsche Forschungsgemeinschaft

Word Cloud

Created with Highcharts 10.0.0switchingAlScferroelectricneuromorphicnmthinN filmswurtzite-typecomputingcansub-5grownepitaxialpreviously1fielddomainsferroelectricsAnalogdevicespromiseshighestenergyefficiencylimiteddevicescalabilityovercomecontributesolutiononereportscharacteristicsPt/Ti/SiO/Si andPt/GaN/sapphire templatessputter-depositioncontextstudyfocusesfollowingmajorachievementscomparedavailableferroelectrics:Recordlowvoltages1 Vachievedrangesuppliedstandardon-chipvoltagesources2ComparedinvestigateddepositionultrathintemplatessignificantlylargercoerciveEbreakdownratioobservedsiliconsubstratestechnologicallyrelevantsubstrate-type3formationtruematerialsfirsttimedemonstratedatomicscalescanningtransmissionelectronmicroscopySTEMinvestigationspartiallyswitchedfilmdirectobservationinversiondomainboundariesIDBwithinsinglenm-sizedgrainssupportstheorygradualdomain-walldrivenprocessUltimatelyenableanalognecessarymimickingconceptsalsohighlyscaled devicesIn-GrainFerroelectricSwitchingSub-5ThinN FilmsVscandiumfilms

Similar Articles

Cited By