The contribution of microbial shikimic acid to humus formation during organic wastes composting: a review.

Zimin Wei, Yue Zhao, Li Zhao, Liqin Wang, Junqiu Wu
Author Information
  1. Zimin Wei: Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
  2. Yue Zhao: College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
  3. Li Zhao: College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
  4. Liqin Wang: College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
  5. Junqiu Wu: College of Life Science, Northeast Agricultural University, Harbin, 150030, China. wujunqiu@neau.edu.cn.

Abstract

Microbial shikimic acid is an important intermediate metabolite in the synthesis of aromatic amino acids which are precursors for forming humus during composting process. Generally, the pathways producing shikimic acid and its downstream products are collectively referred as shikimic acid pathway (SKP). Microbial SKP can produce phenols, and tyrosine. Pyrogallol is the precursor of phenols. And, tyrosine can form an ammoniated monomer. Therefore, regulation of SKP can promote shikimic acid production, which is beneficial in promoting humus production and humification. However, SKP present in microbial cells is distinctive because of providing precursors for humification process, which needs to be recognized during composting. Due to the different structures of various organic wastes, it is difficult to control the SKP efficiency and shikimic acid production. Therefore, it is valuable to review the synthesis of shikimic acid by microorganisms and propose how to promote SKP during different materials composting. Furthermore, we have attempted to illustrate the application of metabolites from SKP in forming humus during organic waste composting. Finally, a series of regulating methods has been outlined to enhance microbial SKP, which are effective to promote humus aromatization and to improve humus formation during different materials composting.

Keywords

References

  1. Bai J, Wu Y, Bu Q et al (2022) Comparative study on antibacterial mechanism of shikimic acid and quinic acid against Staphylococcus aureus through transcriptomic and metabolomic approaches. Lwt 153:112441. https://doi.org/10.1016/j.lwt.2021.112441 [DOI: 10.1016/j.lwt.2021.112441]
  2. Bourbiaux D, Pu J, Rataboul F et al (2021) Reductive or oxidative catalytic lignin depolymerization: An overview of recent advances. Catal Today 373:24–37. https://doi.org/10.1016/j.cattod.2021.03.027 [DOI: 10.1016/j.cattod.2021.03.027]
  3. Candeias NR, Assoah B, Simeonov SP (2018) Production and synthetic modifications of shikimic acid. Chem Rev 118:10458–10550. https://doi.org/10.1021/acs.chemrev.8b00350 [DOI: 10.1021/acs.chemrev.8b00350]
  4. Chen QR, Fan JF, Su J et al (2020) Spatial distribution characteristics of bacterial community structure and gene abundance in sediments of the Bohai Sea. Acta Oceanol Sin 39:69–78 [DOI: 10.1007/s13131-020-1554-8]
  5. Dale Y, Mackey V, Mushi R et al (2003) Simultaneous measurement of phenylalanine and tyrosine in phenylketonuric plasma and dried blood by high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 788:1–8. https://doi.org/10.1016/s1570-0232(02)01005-x [DOI: 10.1016/s1570-0232(02)01005-x]
  6. del Río JC, Rencoret J, Gutiérrez A et al (2020) Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall. ACS Sus Chem Eng 8(13):4997–5012. https://doi.org/10.1021/acssuschemeng.0c01109 [DOI: 10.1021/acssuschemeng.0c01109]
  7. Huang W, Wen P, Wang W et al (2022) Hydrothermal pretreatment improves humification in co-composting of oil palm fronds and paper mill sludge. J Environ Chem Eng 10:107985. https://doi.org/10.1016/j.jece.2022.107985 [DOI: 10.1016/j.jece.2022.107985]
  8. Jeon JR, Baldrian P, Murugesan K et al (2012) Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb Biotechnol 5:318–332. https://doi.org/10.1111/j.1751-7915.2011.00273.x [DOI: 10.1111/j.1751-7915.2011.00273.x]
  9. Jiang Z, Li X, Li M et al (2021) Impacts of red mud on lignin depolymerization and humic substance formation mediated by laccase-producing bacterial community during composting. J Hazard Mater 410:124557. https://doi.org/10.1016/j.jhazmat.2020.124557 [DOI: 10.1016/j.jhazmat.2020.124557]
  10. Jiao N, Herndl GJ, Hansell DA et al (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599. https://doi.org/10.1038/nrmicro2386 [DOI: 10.1038/nrmicro2386]
  11. Jokic A, Wang MC, Liu C et al (2004) Integration of the polyphenol and Maillard reactions into a unified abiotic pathway for humification in nature: the role of δ-MnO. Org Geochem 35:747–762. https://doi.org/10.1016/j.orggeochem.2004.01.021 [DOI: 10.1016/j.orggeochem.2004.01.021]
  12. Kadri T, Rouissi T, Brar SK et al (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J Environ Sci 51:52–74. https://doi.org/10.1016/j.jes.2016.08.023 [DOI: 10.1016/j.jes.2016.08.023]
  13. Kallenbach CM, Frey SD, Grandy AS (2016) Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun 7:1–10. https://doi.org/10.1038/ncomms13630 [DOI: 10.1038/ncomms13630]
  14. Kang J, Yin ZL, Pei FY et al (2022) Aerobic composting of chicken manure with penicillin G: Community classification and quorum sensing mediating its contribution to humification. Bioresource Technol 352:127097. https://doi.org/10.1016/j.biortech.2022.127097 [DOI: 10.1016/j.biortech.2022.127097]
  15. Krämer M, Bongaerts J, Bovenberg R et al (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5:277–283. https://doi.org/10.1016/j.ymben.2003.09.001 [DOI: 10.1016/j.ymben.2003.09.001]
  16. Lakowicz JR, Cherek H (1980) Dipolar relaxation in proteins on the nanosecond timescale observed by wavelength-resolved phase fluorometry of tryptophan fluorescence. J Biol Chem 255:831–834. https://doi.org/10.1016/S0021-9258(19)86104-5 [DOI: 10.1016/S0021-9258(19)86104-5]
  17. Li X, Zheng Y (2020) Biotransformation of lignin: Mechanisms, applications and future work. Biotechnol Prog. https://doi.org/10.1002/btpr.2922 [DOI: 10.1002/btpr.2922]
  18. Li S, Sun K, Latif A et al (2022) Insights into the applications of extracellular laccase-aided humification in livestock manure composting. Environ Sci Technol 56:7412–7425. https://doi.org/10.1021/acs.est.1c08042 [DOI: 10.1021/acs.est.1c08042]
  19. Liu ZH, Le RK, Kosa M et al (2019) Identifying and creating pathways to improve biological lignin valorization. Renew Sust Energy Rev 105:349–362. https://doi.org/10.1016/j.rser.2019.02.009 [DOI: 10.1016/j.rser.2019.02.009]
  20. Liu R, Gao D, Fang Z et al (2022) AroC, a chorismate synthase, is required for the formation of Edwardsiella tarda biofilms. Microbes Infect 24:104955. https://doi.org/10.1016/j.micinf.2022.104955 [DOI: 10.1016/j.micinf.2022.104955]
  21. Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105. https://doi.org/10.1146/annurev-arplant-042811-105439 [DOI: 10.1146/annurev-arplant-042811-105439]
  22. Mamoru N, Masamichi T (1979) Deuteration kinetics of tyrosine by means of fluorescence measurement. B Chem Soc JPN 52:1337–1339. https://doi.org/10.1246/bcsj.52.1337 [DOI: 10.1246/bcsj.52.1337]
  23. Merkel L, Schauer M, Antranikian G et al (2010) Parallel incorporation of different fluorinated amino acids: on the way to “teflon” proteins. Chem Bio Chem 11:1505–1507. https://doi.org/10.1002/cbic.201000295 [DOI: 10.1002/cbic.201000295]
  24. Morita T, Jackson CM (1986) Localization of the structural difference between bovine blood coagulation factors X1 and X2 to tyrosine 18 in the activation peptide. J Biol Chem 261:4008–4014 [DOI: 10.1016/S0021-9258(17)35614-4]
  25. Pline WA, Wilcut JW, Duke SO et al (2002) Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and nonglyphosate-resistant cotton (Gossypium hirsutum L.). J Agric Food Chem 50:506–512. https://doi.org/10.1021/jf0110699 [DOI: 10.1021/jf0110699]
  26. Płonka J, Górny A, Kokoszka K et al (2020) Metabolic profiles in the course of the SKP of Raphanus sativus var. longipinnatus exposed to mesotrione and its degradation products. Chemosphere 245:125616. https://doi.org/10.1016/j.chemosphere.2019.125616 [DOI: 10.1016/j.chemosphere.2019.125616]
  27. Saadat E, Ghorbanzadeh N, Farhangi MB et al (2023) Potential application of Chlorella sp. biomass cultivated in landfill leachate as agricultural fertilizer. Arch Agron Soil Sci 69:1193–1208. https://doi.org/10.1080/03650340.2022.2073351 [DOI: 10.1080/03650340.2022.2073351]
  28. Santos-Sánchez NF, Salas-Coronado R, Hernández-Carlos B et al (2019) Shikimic acid pathway in biosynthesis of phenolic compounds. Plant Physiological Aspects of Phenolic Compounds 1:1–15
  29. Selvarajan E, Veena R, Manoj Kumar N (2018) Polyphenol oxidase, beyond enzyme browning. Microbial bioprospecting for sustainable development. Springer, Singapore. 203–222. https://link.springer.com/chapter/ https://doi.org/10.1007/978-981-13-0053-0_10
  30. Shao S, Wang K, Love JB et al (2022) Water promoted photocatalytic Cβ-O bonds hydrogenolysis in lignin model compounds and lignin biomass conversion to aromatic monomers. Chem Eng J 435:134980. https://doi.org/10.1016/j.cej.2022.134980 [DOI: 10.1016/j.cej.2022.134980]
  31. Sprenger GA (2007) From scratch to value: engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate. Appl Microbiol Biotechnol 75(4):739–749. https://doi.org/10.1007/s00253-007-0931-y [DOI: 10.1007/s00253-007-0931-y]
  32. Starcevic A, Akthar S, Dunlap WC et al (2008) Enzymes of the SKP encoded in the genome of a basal metazoan, Nematostella vectensis, have microbial origins. P Natl Acad Sci USA 105:2533–2537. https://doi.org/10.1073/pnas.0707388105 [DOI: 10.1073/pnas.0707388105]
  33. Stevenson FJ (1994) Humic Chemistry: Genesis, Composition, Reactions. John Wiley and Sons, New York
  34. Su Q, Wu Y, Wang S et al (2023) The reverse function of lignin-degrading enzymes: the polymerization ability to promote the formation of humic substances in domesticated composting. Bioresour Technol 380:129059. https://doi.org/10.1016/j.biortech.2023.129059 [DOI: 10.1016/j.biortech.2023.129059]
  35. Tan KH (2014) Humic Matter in Soil and the Environment: Principles and Controversies, 2nd edn. CRC Press [DOI: 10.1201/b17037]
  36. Tang YF, Dong B, Dai XH (2022) Hyperthermophilic pretreatment composting to produce high quality sludge compost with superior humification degree and nitrogen retention. Chem Eng J 429:132247. https://doi.org/10.1016/j.cej.2021.132247 [DOI: 10.1016/j.cej.2021.132247]
  37. Tarfeen N, Nisa KU, Hamid B et al (2022) Microbial remediation: A promising tool for reclamation of contaminated sites with special emphasis on heavy metal and pesticide pollution: A review. Processes 10:1358. https://doi.org/10.3390/pr10071358 [DOI: 10.3390/pr10071358]
  38. Wilson DJ, Patton S, Florova G et al (1998) The SKP and polyketide biosynthesis. J Ind Microbiol Biot 20:299–303 [DOI: 10.1038/sj.jim.2900527]
  39. Wu J, Zhao Y, Zhao W et al (2017) Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting. Bioresour Technol 226:191–199. https://doi.org/10.1016/j.biortech.2016.12.031 [DOI: 10.1016/j.biortech.2016.12.031]
  40. Wu J, Zhao Y, Yu H et al (2019) Effects of aeration rates on the structural changes in humic substance during co-composting of digestates and chicken manure. Sci Total Environ 658:510–520. https://doi.org/10.1016/j.scitotenv.2018.12.198 [DOI: 10.1016/j.scitotenv.2018.12.198]
  41. Wu J, Yao W, Zhao L et al (2022a) Estimating the synergistic formation of humus by abiotic and biotic pathways during composting. J Clean Prod 363:132470. https://doi.org/10.1016/j.jclepro.2022.132470 [DOI: 10.1016/j.jclepro.2022.132470]
  42. Wu SJ, Chen WJ, Lu SJ et al (2022b) Metabolic engineering of shikimic acid biosynthesis pathway for the production of shikimic acid and its branched products in microorganisms: advances and prospects. Mol 27:4779. https://doi.org/10.3390/molecules27154779 [DOI: 10.3390/molecules27154779]
  43. Wu Y, Guan CY, Griswold N et al (2020) Zero-valent iron-based technologies for removal of heavy metal (loid)s and organic pollutants from the aquatic environment: Recent advances and perspectives. J Clean Prod 277: 123478. http://dx.doi.org/ https://doi.org/10.1016/j.jclepro.2020.123478 .
  44. Yang W, Ding H, Puglia D et al (2022) Bio-renewable polymers based on lignin-derived phenol monomers: Synthesis, applications, and perspectives. SusMat 2:535–568. https://doi.org/10.1002/sus2.87 [DOI: 10.1002/sus2.87]
  45. Yao W, Cai D, Huang F et al (2023) Promoting lignin exploitability in compost: a cooperative microbial depolymerization mechanism. Process Saf Environ 174:856–868. https://doi.org/10.1016/j.psep.2023.05.003 [DOI: 10.1016/j.psep.2023.05.003]
  46. Zavarzina AG, Danchenko NN, Demin VV et al (2021) Humic substances: hypotheses and reality (a review). Eurasian Soil Sci 54:1826–1854. https://doi.org/10.1134/s1064229321120164 [DOI: 10.1134/s1064229321120164]
  47. Zhang W, Zhao Y, Lu Q et al (2022a) Evaluating differences in humic substances formation based on the SKP during different materials composting. Bioresour Technol 364:128060. https://doi.org/10.1016/j.biortech.2022.128060 [DOI: 10.1016/j.biortech.2022.128060]
  48. Zhao L, Wei ZM, Chen XM et al (2021) The remarkable role of SKP in humic acid formation during biochar and montmorillonite addition composting. Bioresour Technol 342:125985. https://doi.org/10.1016/j.biortech.2021.125985 [DOI: 10.1016/j.biortech.2021.125985]
  49. Zhao L, Zhao Y, Zhang WS et al (2022) Identification of key drivers of the microbial shikimic acid pathway during different materials composting. Bioresour Technol 360:12579. https://doi.org/10.1016/j.biortech.2022.127579 [DOI: 10.1016/j.biortech.2022.127579]
  50. Zhong XZ, Li XX, Zeng Y et al (2020) Dynamic change of bacterial community during dairy manure composting process revealed by high-throughput sequencing and advanced bioinformatics tools. Bioresour Technol 306:123091. https://doi.org/10.1016/j.biortech.2020.123091 [DOI: 10.1016/j.biortech.2020.123091]
  51. Zhou HY, Liao XY, Wang TW et al (2010) Enhanced L-phenylalanine biosynthesis by co-expression of pheA(fbr) and aroF(wt). Bioresour Technol 101:4151–4156. https://doi.org/10.1016/j.biortech.2010.01.043 [DOI: 10.1016/j.biortech.2010.01.043]
  52. Zhuo C, Wang X, Docampo-Palacios M et al (2022) Developmental changes in lignin composition are driven by both monolignol supply and laccase specificity. Sci Adv. https://doi.org/10.1126/sciadv.abm8145 [DOI: 10.1126/sciadv.abm8145]

Grants

  1. 2019YFC1906403/National Key Research and Development Project
  2. 51978131/National Natural Science Foundation of China
  3. 51878132/National Natural Science Foundation of China
  4. 51778116/Natural Science Foundation of Hebei Province

MeSH Term

Composting
Shikimic Acid
Phenols
Soil
Tyrosine

Chemicals

Shikimic Acid
Phenols
Soil
Tyrosine

Word Cloud

Created with Highcharts 10.0.0acidSKPshikimichumuscompostingcanpromoteproductionmicrobialdifferentorganicformationMicrobialsynthesisprecursorsformingprocesspathwayphenolstyrosineThereforehumificationwastesreviewmaterialsimportantintermediatemetabolitearomaticaminoacidsGenerallypathwaysproducingdownstreamproductscollectivelyreferredproducePyrogallolprecursorformammoniatedmonomerregulationbeneficialpromotingHoweverpresentcellsdistinctiveprovidingneedsrecognizedDuestructuresvariousdifficultcontrolefficiencyvaluablemicroorganismsproposeFurthermoreattemptedillustrateapplicationmetaboliteswasteFinallyseriesregulatingmethodsoutlinedenhanceeffectivearomatizationimprovecontributioncomposting:AromaticcompoundsCompostingHumusShikimate

Similar Articles

Cited By