GSPHI: A novel deep learning model for predicting phage-host interactions via multiple biological information.

Jie Pan, Wencai You, Xiaoliang Lu, Shiwei Wang, Zhuhong You, Yanmei Sun
Author Information
  1. Jie Pan: Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi'an 710069, China.
  2. Wencai You: Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi'an 710069, China.
  3. Xiaoliang Lu: Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi'an 710069, China.
  4. Shiwei Wang: Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi'an 710069, China.
  5. Zhuhong You: School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China.
  6. Yanmei Sun: Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, The College of Life Sciences, Northwest University, Xi'an 710069, China.

Abstract

Emerging evidence suggests that due to the misuse of antibiotics, bacteriophage (phage) therapy has been recognized as one of the most promising strategies for treating human diseases infected by antibiotic-resistant bacteria. Identification of phage-host interactions (PHIs) can help to explore the mechanisms of bacterial response to phages and provide new insights into effective therapeutic approaches. Compared to conventional wet-lab experiments, computational models for predicting PHIs can not only save time and cost, but also be more efficient and economical. In this study, we developed a deep learning predictive framework called GSPHI to identify potential phage and target bacterium pairs through DNA and protein sequence information. More specifically, GSPHI first initialized the node representations of phages and target bacterial hosts via a natural language processing algorithm. Then a graph embedding algorithm structural deep network embedding (SDNE) was utilized to extract local and global information from the interaction network, and finally, a deep neural network (DNN) was applied to accurately detect the interactions between phages and their bacterial hosts. In the drug-resistant bacteria dataset ESKAPE, GSPHI achieved a prediction accuracy of 86.65 % and AUC of 0.9208 under the 5-fold cross-validation technique, significantly better than other methods. In addition, case studies in Gram-positive and negative bacterial species demonstrated that GSPHI is competent in detecting potential Phage-host interactions. Taken together, these results indicate that GSPHI can provide reasonable candidate sensitive bacteria to phages for biological experiments. The webserver of the GSPHI predictor is freely available at http://120.77.11.78/GSPHI/.

Keywords

References

  1. EMBO Rep. 2018 Nov;19(11): [PMID: 30348892]
  2. IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2546-2554 [PMID: 32070992]
  3. Curr Opin Microbiol. 2003 Oct;6(5):452-6 [PMID: 14572536]
  4. Trends Microbiol. 2019 Jan;27(1):51-63 [PMID: 30181062]
  5. BMC Bioinformatics. 2019 Sep 12;20(1):468 [PMID: 31510919]
  6. Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97 [PMID: 2185863]
  7. Psychol Rev. 1958 Nov;65(6):386-408 [PMID: 13602029]
  8. J Healthc Eng. 2018 May 9;2018:1391265 [PMID: 29854357]
  9. Open Biol. 2022 Jun;12(6):210379 [PMID: 35673854]
  10. Curr Microbiol. 2017 Feb;74(2):277-283 [PMID: 27896482]
  11. IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1801-1810 [PMID: 32813660]
  12. Nucleic Acids Res. 2017 Jan 9;45(1):39-53 [PMID: 27899557]
  13. Nat Rev Immunol. 2023 Feb;23(2):121-133 [PMID: 35672482]
  14. Spec Care Dentist. 2019 Nov;39(6):603-609 [PMID: 31464005]
  15. J Med Microbiol. 2019 Apr;68(4):506-537 [PMID: 30875284]
  16. BMC Bioinformatics. 2017 Mar 14;18(Suppl 3):60 [PMID: 28361670]
  17. IEEE/ACM Trans Comput Biol Bioinform. 2023 Mar-Apr;20(2):976-985 [PMID: 35511833]
  18. J Infect Public Health. 2021 Oct;14(10):1375-1380 [PMID: 34420902]
  19. Comput Struct Biotechnol J. 2019 Dec 26;18:153-161 [PMID: 31969974]
  20. Bioinformatics. 2007 May 15;23(10):1282-8 [PMID: 17379688]
  21. FEMS Microbiol Rev. 2020 Mar 1;44(2):171-188 [PMID: 31981358]
  22. FEMS Microbiol Rev. 2016 Mar;40(2):258-72 [PMID: 26657537]
  23. BMC Biol. 2021 Jan 14;19(1):5 [PMID: 33441133]
  24. Nucleic Acids Res. 2018 Jan 4;46(D1):D700-D707 [PMID: 29177508]
  25. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D154-9 [PMID: 15608167]
  26. PLoS One. 2018 Jun 11;13(6):e0198772 [PMID: 29889859]
  27. J R Soc Interface. 2017 Dec;14(137): [PMID: 29263125]
  28. Clin Chem. 1993 Apr;39(4):561-77 [PMID: 8472349]
  29. PLoS Comput Biol. 2020 May 26;16(5):e1007894 [PMID: 32453718]
  30. FEMS Microbiol Rev. 2020 Nov 24;44(6):684-700 [PMID: 32472938]
  31. Microbiome. 2017 Jul 6;5(1):69 [PMID: 28683828]
  32. PLoS Biol. 2021 Nov 16;19(11):e3001424 [PMID: 34784345]
  33. Bioinformatics. 2017 Oct 01;33(19):3113-3114 [PMID: 28957499]
  34. Health Policy. 2017 Oct;121(10):1025-1030 [PMID: 28888660]
  35. Artif Intell. 2014 May;210:78-122 [PMID: 24771879]
  36. Brief Bioinform. 2022 Sep 20;23(5): [PMID: 36088547]
  37. Microorganisms. 2020 Sep 07;8(9): [PMID: 32906839]
  38. Bioinformatics. 2021 Apr 20;37(3):318-325 [PMID: 32777818]

Word Cloud

Created with Highcharts 10.0.0GSPHIinteractionsbacterialphagesdeepnetworkbacteriacaninformationembeddingphagephage-hostPHIsprovideexperimentspredictinglearningpotentialtargethostsviaalgorithmneuraltechniquePhage-hostbiologicalEmergingevidencesuggestsduemisuseantibioticsbacteriophagetherapyrecognizedonepromisingstrategiestreatinghumandiseasesinfectedantibiotic-resistantIdentificationhelpexploremechanismsresponsenewinsightseffectivetherapeuticapproachesComparedconventionalwet-labcomputationalmodelssavetimecostalsoefficienteconomicalstudydevelopedpredictiveframeworkcalledidentifybacteriumpairsDNAproteinsequencespecificallyfirstinitializednoderepresentationsnaturallanguageprocessinggraphstructuralSDNEutilizedextractlocalglobalinteractionfinallyDNNappliedaccuratelydetectdrug-resistantdatasetESKAPEachievedpredictionaccuracy8665%AUC092085-foldcross-validationsignificantlybettermethodsadditioncasestudiesGram-positivenegativespeciesdemonstratedcompetentdetectingTakentogetherresultsindicatereasonablecandidatesensitivewebserverpredictorfreelyavailablehttp://120771178/GSPHI/GSPHI:novelmodelmultipleDeepGraph

Similar Articles

Cited By