A machine learning approach to explore individual risk factors for tuberculosis treatment non-adherence in Mukono district.

Haron W Gichuhi, Mark Magumba, Manish Kumar, Roy William Mayega
Author Information
  1. Haron W Gichuhi: Department of Biostatistics and Epidemiology, Makerere University School of Public Health, Kampala, Uganda. ORCID
  2. Mark Magumba: Department of Information Systems, Makerere University College of Computing, and Information Science, Kampala, Uganda.
  3. Manish Kumar: Public Health Leadership Program, Gilling's School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States of America. ORCID
  4. Roy William Mayega: Department of Biostatistics and Epidemiology, Makerere University School of Public Health, Kampala, Uganda.

Abstract

Despite the availability and implementation of well-known efficacious interventions for tuberculosis treatment by the Ministry of Health, Uganda (MoH), treatment non-adherence persists. Moreover, identifying a specific tuberculosis patient at risk of treatment non-adherence is still a challenge. Thus, this retrospective study, based on a record review of 838 tuberculosis patients enrolled in six health facilities, presents, and discusses a machine learning approach to explore the individual risk factors predictive of tuberculosis treatment non-adherence in the Mukono district, Uganda. Five classification machine learning algorithms, logistic regression (LR), artificial neural networks (ANN), support vector machines (SVM), random forest (RF), and AdaBoost were trained, and evaluated by computing their accuracy, F1 score, precision, recall, and the area under the receiver operating curve (AUC) through the aid of a confusion matrix. Of the five developed and evaluated algorithms, SVM (91.28%) had the highest accuracy (AdaBoost, 91.05% performed better than SVM when AUC is considered as evaluation parameter). Looking at all five evaluation parameters globally, AdaBoost is quite on par with SVM. Individual risk factors predictive of non-adherence included tuberculosis type, GeneXpert results, sub-country, antiretroviral status, contacts below 5 years, health facility ownership, sputum test results at 2 months, treatment supporter, cotrimoxazole preventive therapy (CPT) dapsone status, risk group, patient age, gender, middle and upper arm circumference, referral, positive sputum test at 5 and 6 months. Therefore, machine learning techniques, specifically classification types, can identify patient factors predictive of treatment non-adherence and accurately differentiate between adherent and non-adherent patients. Thus, tuberculosis program management should consider adopting the classification machine learning techniques evaluated in this study as a screening tool for identifying and targeting suited interventions to these patients.

References

  1. Pan Afr Med J. 2014 Jan 31;17:78 [PMID: 24711884]
  2. Expert Rev Anti Infect Ther. 2017 Feb;15(2):157-165 [PMID: 27910715]
  3. PLoS One. 2014 Apr 03;9(4):e93574 [PMID: 24699682]
  4. J Health Popul Nutr. 2018 Jan 5;37(1):1 [PMID: 29304840]
  5. Health Care Manag Sci. 2020 Dec;23(4):482-506 [PMID: 33040231]
  6. Inform Health Soc Care. 2019;44(2):135-151 [PMID: 29461901]
  7. BMJ Open Diabetes Res Care. 2020 Mar;8(1): [PMID: 32156739]
  8. PLOS Glob Public Health. 2022 May 11;2(5):e0000430 [PMID: 36962243]
  9. Glob Health Action. 2018;11(1):1510592 [PMID: 30394200]
  10. BMC Infect Dis. 2021 Oct 24;21(1):1093 [PMID: 34689736]
  11. PLoS One. 2021 Apr 6;16(4):e0248820 [PMID: 33822794]
  12. PLoS One. 2021 Mar 15;16(3):e0246287 [PMID: 33720959]
  13. Comput Methods Programs Biomed. 2017 Dec;152:149-157 [PMID: 29054255]
  14. BMC Public Health. 2021 Nov 26;21(1):2167 [PMID: 34836521]
  15. Int J Med Inform. 2020 Sep;141:104198 [PMID: 32574924]
  16. PLoS One. 2021 Jun 21;16(6):e0253239 [PMID: 34153076]
  17. BMC Infect Dis. 2021 Mar 22;21(1):292 [PMID: 33752637]
  18. PLoS Med. 2021 May 6;18(5):e1003628 [PMID: 33956802]
  19. Int J Environ Res Public Health. 2021 Sep 23;18(19): [PMID: 34639291]
  20. BMC Public Health. 2012 Dec 05;12:1050 [PMID: 23217171]
  21. Stat Commun Infect Dis. 2020 Nov 12;12(Suppl1):20190017 [PMID: 37288469]
  22. J Healthc Eng. 2021 Aug 31;2021:2567080 [PMID: 34512933]
  23. Pan Afr Med J. 2017 Nov 06;28(Suppl 1):11 [PMID: 30167036]
  24. Trop Med Int Health. 2011 Aug;16(8):981-7 [PMID: 21585625]
  25. ERJ Open Res. 2020 Apr 06;6(1): [PMID: 32280670]
  26. ERJ Open Res. 2020 Nov 02;6(4): [PMID: 33263043]
  27. Int J Mycobacteriol. 2019 Oct-Dec;8(4):359-365 [PMID: 31793506]
  28. Ann Med Health Sci Res. 2013 Jan;3(1):67-74 [PMID: 23634333]
  29. Int J Med Inform. 2017 Dec;108:1-8 [PMID: 29132615]
  30. Database (Oxford). 2020 Jan 1;2020: [PMID: 32185396]
  31. BMJ Glob Health. 2020 Jun;5(6): [PMID: 32565426]
  32. J Med Syst. 2016 Jul;40(7):164 [PMID: 27209184]
  33. Afr Health Sci. 2021 Mar;21(1):238-247 [PMID: 34394303]
  34. BMJ. 2020 Mar 18;368:m441 [PMID: 32188600]
  35. BMC Res Notes. 2018 Oct 1;11(1):691 [PMID: 30285907]
  36. Trop Med Int Health. 2011 Jun;16(6):693-8 [PMID: 21375681]
  37. Infect Drug Resist. 2021 Sep 09;14:3673-3681 [PMID: 34526787]
  38. BMC Infect Dis. 2013 Aug 01;13:360 [PMID: 23915376]
  39. Cochrane Database Syst Rev. 2015 May 29;(5):CD003343 [PMID: 26022367]
  40. PLoS One. 2013 Nov 11;8(11):e78791 [PMID: 24244364]
  41. Tuberc Res Treat. 2019 Feb 12;2019:3569018 [PMID: 30891315]
  42. AIDS Care. 2022 Oct;34(10):1243-1248 [PMID: 34402350]
  43. J Clin Tuberc Other Mycobact Dis. 2020 Sep 12;21:100184 [PMID: 33204851]
  44. PLoS One. 2018 Nov 20;13(11):e0207491 [PMID: 30458029]
  45. BMC Infect Dis. 2016 Aug 15;16(1):416 [PMID: 27526850]
  46. BMC Med Res Methodol. 2021 Jul 31;21(1):159 [PMID: 34332540]
  47. Soc Sci Med. 2003 Apr;56(8):1789-96 [PMID: 12639595]
  48. Pan Afr Med J. 2018 Aug 28;30:293 [PMID: 30637077]

Word Cloud

Created with Highcharts 10.0.0tuberculosistreatmentnon-adherenceriskmachinelearningfactorsSVMpatientpatientspredictiveclassificationAdaBoostevaluatedinterventionsUgandaidentifyingThusstudyhealthapproachexploreindividualMukonodistrictalgorithmsaccuracyAUCfive91evaluationresultsstatus5sputumtestmonthstechniquesDespiteavailabilityimplementationwell-knownefficaciousMinistryHealthMoHpersistsMoreoverspecificstillchallengeretrospectivebasedrecordreview838enrolledsixfacilitiespresentsdiscussesFivelogisticregressionLRartificialneuralnetworksANNsupportvectormachinesrandomforestRFtrainedcomputingF1scoreprecisionrecallareareceiveroperatingcurveaidconfusionmatrixdeveloped28%highest05%performedbetterconsideredparameterLookingparametersgloballyquiteparIndividualincludedtypeGeneXpertsub-countryantiretroviralcontactsyearsfacilityownership2supportercotrimoxazolepreventivetherapyCPTdapsonegroupagegendermiddleupperarmcircumferencereferralpositive6Thereforespecificallytypescanidentifyaccuratelydifferentiateadherentnon-adherentprogrammanagementconsideradoptingscreeningtooltargetingsuited

Similar Articles

Cited By