Forecasting virus outbreaks with social media data via neural ordinary differential equations.

Matías Núñez, Nadia L Barreiro, Rafael A Barrio, Christopher Rackauckas
Author Information
  1. Matías Núñez: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. matias.nunez2@gmail.com.
  2. Nadia L Barreiro: Instituto de Investigaciones Científicas y Técnicas para la Defensa (CITEDEF), Buenos Aires, Argentina.
  3. Rafael A Barrio: Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-365, México, 04510, Mexico.
  4. Christopher Rackauckas: Computer Science & Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.

Abstract

During the Covid-19 pandemic, real-time social media data could in principle be used as an early predictor of a new epidemic wave. This possibility is examined here by employing a neural ordinary differential equation (neural ODE) trained to forecast viral outbreaks in a specific geographic region. It learns from multivariate time series of signals derived from a novel set of large online polls regarding COVID-19 symptoms. Once trained, the neural ODE can capture the dynamics of interconnected local signals and effectively estimate the number of new infections up to two months in advance. In addition, it may predict the future consequences of changes in the number of infected at a certain period, which might be related with the flow of individuals entering or exiting a region. This study provides persuasive evidence for the predictive ability of widely disseminated social media surveys for public health applications.

References

  1. Nat Med. 2020 May;26(5):634-638 [PMID: 32273611]
  2. N Engl J Med. 2009 May 21;360(21):2153-5, 2157 [PMID: 19423867]
  3. Zhonghua Liu Xing Bing Xue Za Zhi. 2020 Dec 10;41(12):1994-1998 [PMID: 32539259]
  4. Sci Rep. 2019 Dec 3;9(1):18147 [PMID: 31796768]
  5. Front Public Health. 2018 Mar 07;6:68 [PMID: 29594091]
  6. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  7. MMWR Suppl. 2004 Sep 24;53:159-65 [PMID: 15714646]
  8. NPJ Digit Med. 2021 Mar 3;4(1):41 [PMID: 33658681]
  9. Annu Rev Public Health. 2017 Mar 20;38:57-79 [PMID: 27992726]
  10. Sci Rep. 2019 Mar 27;9(1):5238 [PMID: 30918276]
  11. Lancet. 2011 Nov 26;378(9806):1833-4 [PMID: 22118433]
  12. J Med Internet Res. 2021 Apr 23;23(4):e26628 [PMID: 33844636]
  13. PLoS One. 2011;6(8):e23610 [PMID: 21886802]
  14. Biomed Res Int. 2020 Jun 25;2020:3452402 [PMID: 32685469]
  15. R Soc Open Sci. 2021 Mar 17;8(3):202312 [PMID: 33959370]
  16. PLoS One. 2013 Dec 09;8(12):e83672 [PMID: 24349542]
  17. Chaos Solitons Fractals. 2021 May;146:110861 [PMID: 33746373]
  18. JMIR Mhealth Uhealth. 2020 Jun 10;8(6):e19457 [PMID: 32499212]
  19. PLoS Negl Trop Dis. 2021 Mar 2;15(3):e0008599 [PMID: 33651803]
  20. Adv Differ Equ. 2021;2021(1):228 [PMID: 33968144]
  21. Nat Med. 2020 Aug;26(8):1183-1192 [PMID: 32770165]
  22. J Ambient Intell Humaniz Comput. 2023;14(6):7381-7398 [PMID: 36281429]
  23. Bull Math Biol. 1991;53(1-2):33-55 [PMID: 2059741]
  24. BMC Public Health. 2016 Dec 8;16(1):1238 [PMID: 27931204]
  25. NPJ Digit Med. 2021 Jan 4;4(1):3 [PMID: 33398013]
  26. Clin Infect Dis. 2008 Dec 1;47(11):1443-8 [PMID: 18954267]
  27. Mol Inform. 2017 Jan;36(1-2): [PMID: 27783464]
  28. Science. 2014 Mar 14;343(6176):1203-5 [PMID: 24626916]
  29. Patterns (N Y). 2020 Dec 11;1(9):100145 [PMID: 33225319]
  30. PLoS Comput Biol. 2015 Oct 29;11(10):e1004513 [PMID: 26513245]
  31. MMWR Suppl. 2004 Sep 24;53:5-11 [PMID: 15714620]
  32. Artif Intell Med. 2014 Jul;61(3):153-63 [PMID: 24613716]
  33. Epidemiol Infect. 2020 Apr 21;148:e93 [PMID: 32312351]
  34. BMC Public Health. 2020 Nov 27;20(1):1809 [PMID: 33246432]
  35. JMIR Public Health Surveill. 2020 Apr 16;6(2):e18795 [PMID: 32287038]
  36. Western Pac Surveill Response J. 2015 Jun 26;6(2):3-6 [PMID: 26306208]
  37. Int J Infect Dis. 2016 Dec;53:15-20 [PMID: 27777092]

MeSH Term

Humans
COVID-19
Pandemics
Social Media
SARS-CoV-2
Disease Outbreaks
Forecasting

Word Cloud

Created with Highcharts 10.0.0neuralsocialmediadatanewordinarydifferentialODEtrainedoutbreaksregionsignalsnumberCovid-19pandemicreal-timeprincipleusedearlypredictorepidemicwavepossibilityexaminedemployingequationforecastviralspecificgeographiclearnsmultivariatetimeseriesderivednovelsetlargeonlinepollsregardingCOVID-19symptomscancapturedynamicsinterconnectedlocaleffectivelyestimateinfectionstwomonthsadvanceadditionmaypredictfutureconsequenceschangesinfectedcertainperiodmightrelatedflowindividualsenteringexitingstudyprovidespersuasiveevidencepredictiveabilitywidelydisseminatedsurveyspublichealthapplicationsForecastingvirusviaequations

Similar Articles

Cited By