Constructing a full, multiple-layer interactome for SARS-CoV-2 in the context of lung disease: Linking the virus with human genes and microbes.

Shaoke Lou, Mingjun Yang, Tianxiao Li, Weihao Zhao, Hannah Cevasco, Yucheng T Yang, Mark Gerstein
Author Information
  1. Shaoke Lou: Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut, United States of America. ORCID
  2. Mingjun Yang: School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London, United Kingdom. ORCID
  3. Tianxiao Li: Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut, United States of America.
  4. Weihao Zhao: Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut, United States of America. ORCID
  5. Hannah Cevasco: Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut, United States of America. ORCID
  6. Yucheng T Yang: Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
  7. Mark Gerstein: Program in Computational Biology & Bioinformatics, Yale University, New Haven, Connecticut, United States of America. ORCID

Abstract

The COVID-19 pandemic caused by the SARS-CoV-2 virus has resulted in millions of deaths worldwide. The disease presents with various manifestations that can vary in severity and long-term outcomes. Previous efforts have contributed to the development of effective strategies for treatment and prevention by uncovering the mechanism of viral infection. We now know all the direct protein-protein interactions that occur during the lifecycle of SARS-CoV-2 infection, but it is critical to move beyond these known interactions to a comprehensive understanding of the "full interactome" of SARS-CoV-2 infection, which incorporates human microRNAs (miRNAs), additional human protein-coding genes, and exogenous microbes. Potentially, this will help in developing new drugs to treat COVID-19, differentiating the nuances of long COVID, and identifying histopathological signatures in SARS-CoV-2-infected organs. To construct the full interactome, we developed a statistical modeling approach called MLCrosstalk (multiple-layer crosstalk) based on latent Dirichlet allocation. MLCrosstalk integrates data from multiple sources, including microbes, human protein-coding genes, miRNAs, and human protein-protein interactions. It constructs "topics" that group SARS-CoV-2 with genes and microbes based on similar patterns of co-occurrence across patient samples. We use these topics to infer linkages between SARS-CoV-2 and protein-coding genes, miRNAs, and microbes. We then refine these initial linkages using network propagation to contextualize them within a larger framework of network and pathway structures. Using MLCrosstalk, we identified genes in the IL1-processing and VEGFA-VEGFR2 pathways that are linked to SARS-CoV-2. We also found that Rothia mucilaginosa and Prevotella melaninogenica are positively and negatively correlated with SARS-CoV-2 abundance, a finding corroborated by analysis of single-cell sequencing data.

References

  1. Cell. 2021 Apr 29;184(9):2394-2411.e16 [PMID: 33743211]
  2. Nat Commun. 2020 Aug 6;11(1):3924 [PMID: 32764665]
  3. Eur J Immunol. 2021 Jun;51(6):1535-1538 [PMID: 33768543]
  4. Thorax. 2016 Sep;71(9):777-8 [PMID: 27435609]
  5. Nat Rev Microbiol. 2022 May;20(5):270-284 [PMID: 35354968]
  6. Int J Mol Sci. 2021 Oct 30;22(21): [PMID: 34769246]
  7. Cell Syst. 2019 Apr 24;8(4):352-357.e3 [PMID: 30956140]
  8. Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42 [PMID: 23193287]
  9. Nat Commun. 2020 Jul 24;11(1):3718 [PMID: 32709886]
  10. Cancer Res. 2019 Dec 1;79(23):6010-6023 [PMID: 31481499]
  11. J Med Case Rep. 2019 Mar 12;13(1):84 [PMID: 30857551]
  12. Nat Microbiol. 2022 Jun;7(6):780-795 [PMID: 35577971]
  13. Noncoding RNA Res. 2020 Dec;5(4):222-231 [PMID: 33251388]
  14. Nat Immunol. 2021 Nov;22(11):1360-1362 [PMID: 34671145]
  15. Cell. 2020 May 14;181(4):914-921.e10 [PMID: 32330414]
  16. Nat Biotechnol. 2022 Nov;40(11):1680-1689 [PMID: 35697804]
  17. Immunology. 2017 Aug;151(4):363-374 [PMID: 28542929]
  18. Clin Infect Dis. 2020 Jul 28;71(15):713-720 [PMID: 32129843]
  19. Commun Biol. 2021 Feb 18;4(1):240 [PMID: 33603076]
  20. Bioinformatics. 2020 Jul 1;36(Suppl_1):i474-i481 [PMID: 32657410]
  21. Cell. 2021 Apr 1;184(7):1895-1913.e19 [PMID: 33657410]
  22. Hum Genet. 2021 May;140(5):747-760 [PMID: 33221945]
  23. Signal Transduct Target Ther. 2022 Apr 29;7(1):143 [PMID: 35487886]
  24. Trends Immunol. 2022 Apr;43(4):268-270 [PMID: 35272932]
  25. J Allergy Clin Immunol. 2021 Sep;148(3):732-738.e1 [PMID: 34224783]
  26. Med. 2021 Jan 15;2(1):99-112.e7 [PMID: 32838362]
  27. Nat Rev Gastroenterol Hepatol. 2023 May;20(5):323-337 [PMID: 36271144]
  28. Genome Biol. 2014 Mar 03;15(3):R46 [PMID: 24580807]
  29. Pathogens. 2021 Jun 17;10(6): [PMID: 34204243]
  30. Am J Med Sci. 2020 Jan;359(1):54-56 [PMID: 31785769]
  31. Nat Commun. 2014 Aug 22;5:4718 [PMID: 25146723]
  32. Arch Bronconeumol. 2014 Nov;50(11):493-5 [PMID: 24568756]
  33. Nat Commun. 2020 Dec 9;11(1):6319 [PMID: 33298930]
  34. Int Immunopharmacol. 2021 Jan;90:107204 [PMID: 33221169]
  35. Cell. 2020 Jun 25;181(7):1475-1488.e12 [PMID: 32479746]
  36. F1000Res. 2021 Feb 15;10:113 [PMID: 33868645]
  37. Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 [PMID: 24288368]
  38. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  39. Front Cell Infect Microbiol. 2020 Oct 14;10:569070 [PMID: 33163417]
  40. Eur J Hum Genet. 2022 Aug;30(8):908-914 [PMID: 35768520]
  41. Genome Med. 2020 Jan 28;12(1):12 [PMID: 31992345]
  42. Nat Rev Microbiol. 2023 Mar;21(3):133-146 [PMID: 36639608]
  43. J Med Microbiol. 2021 Apr;70(4): [PMID: 33861190]
  44. PLoS One. 2013 May 30;8(5):e64285 [PMID: 23737977]
  45. Sci Adv. 2021 Feb 3;7(6): [PMID: 33536218]
  46. Viruses. 2020 Jun 04;12(6): [PMID: 32512929]
  47. Nat Immunol. 2021 Nov;22(11):1416-1427 [PMID: 34663977]
  48. Nature. 2020 Jul;583(7816):459-468 [PMID: 32353859]
  49. Microbiome. 2022 Oct 5;10(1):165 [PMID: 36195943]
  50. Cell. 2020 Sep 17;182(6):1560-1573.e13 [PMID: 32783916]
  51. Nature. 2020 Mar;579(7798):265-269 [PMID: 32015508]
  52. Science. 2020 Dec 4;370(6521): [PMID: 33060197]
  53. Nat Immunol. 2020 Sep;21(9):1107-1118 [PMID: 32788748]

Grants

  1. R01 DA051906/NIDA NIH HHS

MeSH Term

Humans
SARS-CoV-2
COVID-19
Post-Acute COVID-19 Syndrome
Pandemics
MicroRNAs

Chemicals

MicroRNAs

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2geneshumanmicrobesinfectioninteractionsmiRNAsprotein-codingMLCrosstalkCOVID-19virusprotein-proteinfullinteractomemultiple-layerbaseddatalinkagesnetworkpandemiccausedresultedmillionsdeathsworldwidediseasepresentsvariousmanifestationscanvaryseveritylong-termoutcomesPreviouseffortscontributeddevelopmenteffectivestrategiestreatmentpreventionuncoveringmechanismviralnowknowdirectoccurlifecyclecriticalmovebeyondknowncomprehensiveunderstanding"fullinteractome"incorporatesmicroRNAsadditionalexogenousPotentiallywillhelpdevelopingnewdrugstreatdifferentiatingnuanceslongCOVIDidentifyinghistopathologicalsignaturesSARS-CoV-2-infectedorgansconstructdevelopedstatisticalmodelingapproachcalledcrosstalklatentDirichletallocationintegratesmultiplesourcesincludingconstructs"topics"groupsimilarpatternsco-occurrenceacrosspatientsamplesusetopicsinferrefineinitialusingpropagationcontextualizewithinlargerframeworkpathwaystructuresUsingidentifiedIL1-processingVEGFA-VEGFR2pathwayslinkedalsofoundRothiamucilaginosaPrevotellamelaninogenicapositivelynegativelycorrelatedabundancefindingcorroboratedanalysissingle-cellsequencingConstructingcontextlungdisease:Linking

Similar Articles

Cited By