Comparative genomics reveals insights into anuran genome size evolution.

Bin Zuo, Lotanna Micah Nneji, Yan-Bo Sun
Author Information
  1. Bin Zuo: Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
  2. Lotanna Micah Nneji: Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
  3. Yan-Bo Sun: Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China. sunyanbo@ynu.edu.cn.

Abstract

BACKGROUND: Amphibians, particularly anurans, display an enormous variation in genome size. Due to the unavailability of whole genome datasets in the past, the genomic elements and evolutionary causes of anuran genome size variation are poorly understood. To address this, we analyzed whole-genome sequences of 14 anuran species ranging in size from 1.1 to 6.8 Gb. By annotating multiple genomic elements, we investigated the genomic correlates of anuran genome size variation and further examined whether the genome size relates to habitat types.
RESULTS: Our results showed that intron expansions or contraction and Transposable Elements (TEs) diversity do not contribute significantly to genome size variation. However, the recent accumulation of transposable elements (TEs) and the lack of deletion of ancient TEs primarily accounted for the evolution of anuran genome sizes. Our study showed that the abundance and density of simple repeat sequences positively correlate with genome size. Ancestral state reconstruction revealed that genome size exhibits a taxon-specific pattern of evolution, with families Bufonidae and Pipidae experiencing extreme genome expansion and contraction events, respectively. Our result showed no relationship between genome size and habitat types, although large genome-sized species are predominantly found in humid habitats.
CONCLUSIONS: Overall, our study identified the genomic element and their evolutionary dynamics accounting for anuran genome size variation, thus paving a path to a greater understanding of the size evolution of the genome in amphibians.

Keywords

References

  1. Genome. 2000 Oct;43(5):750-5 [PMID: 11081963]
  2. G3 (Bethesda). 2019 Dec 3;9(12):3909-3919 [PMID: 31578218]
  3. Gigascience. 2022 Feb 25;11: [PMID: 35217860]
  4. BMC Genomics. 2017 Nov 6;18(1):848 [PMID: 29110701]
  5. Nat Rev Genet. 2008 May;9(5):411-2; author reply 414 [PMID: 18421312]
  6. Nat Rev Genet. 2007 Dec;8(12):973-82 [PMID: 17984973]
  7. Theor Popul Biol. 2002 Jun;61(4):531-44 [PMID: 12167373]
  8. Nat Genet. 2002 Feb;30(2):194-200 [PMID: 11799393]
  9. New Phytol. 2018 Jan;217(1):428-438 [PMID: 28960318]
  10. Plant Physiol. 2018 Feb;176(2):1410-1422 [PMID: 29233850]
  11. J Cell Biol. 1981 Dec;91(3 Pt 2):3s-14s [PMID: 7033242]
  12. Proc Natl Acad Sci U S A. 2004 Aug 24;101(34):12404-10 [PMID: 15240870]
  13. Bioinformatics. 2018 Feb 15;34(4):681-683 [PMID: 29048524]
  14. J Exp Zool. 2001 Dec 15;291(4):365-74 [PMID: 11754015]
  15. Mol Ecol. 2021 Aug;30(16):4039-4061 [PMID: 34145931]
  16. Commun Biol. 2021 Feb 11;4(1):186 [PMID: 33574498]
  17. Proc Biol Sci. 2014 Jan 29;281(1779):20132780 [PMID: 24478299]
  18. Genome Biol Evol. 2012;4(2):168-83 [PMID: 22200636]
  19. Nucleic Acids Res. 2016 Jan 4;44(D1):D81-9 [PMID: 26612867]
  20. Experientia. 1975 Jul 15;31(7):804-6 [PMID: 1140318]
  21. Mol Ecol Resour. 2020 Jan;20(1):283-291 [PMID: 31599098]
  22. BMC Genomics. 2007 Jul 06;8:218 [PMID: 17617907]
  23. Wellcome Open Res. 2021 Oct 22;6:286 [PMID: 35118201]
  24. Mol Biol Evol. 2004 Jun;21(6):991-1007 [PMID: 14963101]
  25. Dev Biol. 2019 Aug 1;452(1):8-20 [PMID: 30980799]
  26. Biol Rev Camb Philos Soc. 2001 Feb;76(1):65-101 [PMID: 11325054]
  27. J Hered. 2013 Jan-Feb;104(1):154-7 [PMID: 23144492]
  28. BMC Biol. 2022 Oct 28;20(1):243 [PMID: 36307800]
  29. Science. 2000 Feb 11;287(5455):1060-2 [PMID: 10669421]
  30. Cytogenet Genome Res. 2005;110(1-4):462-7 [PMID: 16093699]
  31. Proc Biol Sci. 1992 Aug 22;249(1325):119-24 [PMID: 1360673]
  32. Mol Ecol Resour. 2021 May;21(4):1256-1273 [PMID: 33426774]
  33. Chromosoma. 1970;29(3):365-74 [PMID: 5436407]
  34. Proc Biol Sci. 2019 Sep 25;286(1911):20191780 [PMID: 31530144]
  35. J Mol Evol. 2022 Oct;90(5):332-341 [PMID: 35751655]
  36. Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20662-20671 [PMID: 32753383]
  37. Front Genet. 2021 Feb 26;12:622724 [PMID: 33719337]
  38. Trends Genet. 2001 Jan;17(1):23-8 [PMID: 11163918]
  39. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]
  40. Front Plant Sci. 2016 Sep 13;7:1350 [PMID: 27679641]
  41. Brief Bioinform. 2022 Jul 18;23(4): [PMID: 35788820]
  42. Nat Rev Genet. 2017 Jul;18(7):411-424 [PMID: 28502977]
  43. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  44. Genome Biol Evol. 2018 Apr 1;10(4):1088-1103 [PMID: 29684203]
  45. Zool Res. 2020 Jul 18;41(4):351-364 [PMID: 32390371]
  46. Gigascience. 2018 Sep 1;7(9): [PMID: 30101298]
  47. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9451-9457 [PMID: 32300014]
  48. GigaByte. 2020 Jul 01;2020:gigabyte2 [PMID: 36824594]
  49. Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296 [PMID: 33885785]
  50. Annu Rev Genet. 2008;42:587-617 [PMID: 18680436]
  51. Bioinformatics. 2007 Jul 1;23(13):1683-5 [PMID: 17463017]
  52. BMC Bioinformatics. 2008 Jan 14;9:18 [PMID: 18194517]
  53. Mol Biol (Mosk). 2019 Jan-Feb;53(1):142-153 [PMID: 30895962]
  54. Nat Ecol Evol. 2018 Nov;2(11):1792-1799 [PMID: 30250158]
  55. Genome Biol Evol. 2017 Jan 1;9(1):161-177 [PMID: 28158585]
  56. Mol Ecol Resour. 2022 May;22(4):1545-1558 [PMID: 34837460]
  57. BMC Genomics. 2012 Jun 15;13:246 [PMID: 22702965]
  58. Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1257-62 [PMID: 25733869]
  59. BMC Evol Biol. 2015 Apr 22;15:69 [PMID: 25896861]
  60. Annu Rev Genet. 2007;41:331-68 [PMID: 18076328]
  61. Genomics Proteomics Bioinformatics. 2021 Feb;19(1):123-139 [PMID: 33677107]
  62. Cytogenet Genome Res. 2015;147(4):217-39 [PMID: 26967166]
  63. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  64. Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:4.10.1-4.10.14 [PMID: 19274634]
  65. iScience. 2022 Aug 04;25(9):104873 [PMID: 36039293]
  66. Nat Commun. 2017 Nov 10;8(1):1433 [PMID: 29127278]
  67. BMC Genomics. 2021 Nov 20;22(1):842 [PMID: 34800971]
  68. Trends Genet. 1989 Apr;5(4):103-7 [PMID: 2543105]
  69. Am Nat. 2002 Nov;160(5):539-52 [PMID: 18707506]
  70. Mol Phylogenet Evol. 2015 May;86:90-109 [PMID: 25797922]
  71. Genome Res. 2003 May;13(5):821-30 [PMID: 12727902]
  72. Gene. 2020 Oct 5;757:144919 [PMID: 32603771]
  73. Genetica. 2002 May;115(1):131-46 [PMID: 12188045]
  74. Evol Dev. 2002 Mar-Apr;4(2):73-5 [PMID: 12004964]
  75. PLoS Biol. 2016 Dec 22;14(12):e2001624 [PMID: 28005907]
  76. Theor Appl Genet. 2003 Feb;106(3):411-22 [PMID: 12589540]
  77. Nat Commun. 2019 Jan 21;10(1):356 [PMID: 30664654]
  78. Cytometry. 1998 Feb 1;31(2):100-9 [PMID: 9482279]
  79. Genome Biol Evol. 2017 Jun 1;9(6):1582-1598 [PMID: 28633296]
  80. Curr Opin Genet Dev. 1999 Dec;9(6):657-63 [PMID: 10607616]
  81. Mol Ecol Resour. 2008 Jan;8(1):92-4 [PMID: 21585724]
  82. Nature. 2016 Oct 19;538(7625):336-343 [PMID: 27762356]
  83. Chromosoma. 1970;30(2):228-49 [PMID: 4193399]
  84. Comp Biochem Physiol B. 1989;92(3):447-53 [PMID: 2650987]
  85. Proc Natl Acad Sci U S A. 2021 Mar 16;118(11): [PMID: 33836564]
  86. Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):E1460-E1469 [PMID: 28179571]
  87. Nat Commun. 2024 Jan 17;15(1):579 [PMID: 38233380]

Grants

  1. 202101AV070009/Yunnan Fundamental Research Projects
  2. 2022YFF0802300/National Key Research Development Program of China

MeSH Term

Animals
Genome Size
DNA Transposable Elements
Genomics
Anura
Evolution, Molecular

Chemicals

DNA Transposable Elements

Word Cloud

Created with Highcharts 10.0.0genomesizevariationanurangenomicelementsevolutionsequencesshowedTEsevolutionaryspecies1habitattypescontractionTransposablestudyrepeatBACKGROUND:AmphibiansparticularlyanuransdisplayenormousDueunavailabilitywholedatasetspastcausespoorlyunderstoodaddressanalyzedwhole-genome14ranging68GbannotatingmultipleinvestigatedcorrelatesexaminedwhetherrelatesRESULTS:resultsintronexpansionsElementsdiversitycontributesignificantlyHoweverrecentaccumulationtransposablelackdeletionancientprimarilyaccountedsizesabundancedensitysimplepositivelycorrelateAncestralstatereconstructionrevealedexhibitstaxon-specificpatternfamiliesBufonidaePipidaeexperiencingextremeexpansioneventsrespectivelyresultrelationshipalthoughlargegenome-sizedpredominantlyfoundhumidhabitatsCONCLUSIONS:OverallidentifiedelementdynamicsaccountingthuspavingpathgreaterunderstandingamphibiansComparativegenomicsrevealsinsightsAnuransGenomeSimple

Similar Articles

Cited By (9)