Enhanced activity of Ellagic acid in lipid nanoparticles (EA-liposomes) against in immunosuppressed mice.

Khaled S Allemailem
Author Information
  1. Khaled S Allemailem: Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia.

Abstract

infections have come to the surface in huge numbers in the recent decades. Furthermore, has adopted great ability to nullify the majority of currently available antibiotics. With the purpose of finding a nontoxic and efficient therapeutic agent, we analyzed the activity of Ellagic acid (EA) against the multidrug-resistant . EA not only demonstrated its activity against , but also inhibited the biofilm formation. Since EA shows poor solubility in an aqueous environment, a lipid nanoparticle-based (liposomal) formulation of EA (EA-liposomes) was prepared and its effectiveness was assessed to treat bacterial infection in the immunocompromised murine model. Therapy with EA-liposomes imparted greater protection to infected mice by increasing the survival and decreasing the bacterial load in the lungs. infected mice treated with EA-liposomes (100 mg/kg) showed 60% survival rate as compared to 20% of those treated with free EA at the same dose. The bacterial load was found to be 32778 ± 12232 in the lungs of EA-liposomes (100 mg/kg)-treated mice, which was significantly lower to 165667 ± 53048 in the lung tissues of free EA treated mice. Likewise, EA-liposomes also restored the liver function (AST and ALT) and kidney function parameters (BUN and creatinine). The broncho-alveolar fluid (BALF) from infected mice contained greater quantities of IL-6, IL-1β and TNF-α, which were significantly alleviated in EA-liposomes treated mice. These findings together support the possible implication of EA-liposomes to treat infection, especially in immunocompromised mice.

Keywords

References

  1. Microbes Infect. 2009 Oct;11(12):946-55 [PMID: 19573619]
  2. J Cell Biochem. 2019 Nov;120(11):18640-18649 [PMID: 31338900]
  3. Int J Nanomedicine. 2017 Oct 10;12:7405-7417 [PMID: 29066891]
  4. Antimicrob Agents Chemother. 2020 Nov 17;64(12): [PMID: 32928735]
  5. Molecules. 2020 Mar 23;25(6): [PMID: 32210106]
  6. J Antimicrob Chemother. 2018 Aug 1;73(8):2003-2020 [PMID: 29506149]
  7. PLoS One. 2012;7(1):e28737 [PMID: 22242149]
  8. Infect Drug Resist. 2021 Nov 05;14:4657-4666 [PMID: 34764660]
  9. Naunyn Schmiedebergs Arch Pharmacol. 2017 Sep;390(9):893-903 [PMID: 28643086]
  10. J Antimicrob Chemother. 2018 Jun 1;73(6):1595-1603 [PMID: 29566160]
  11. Molecules. 2021 Apr 02;26(7): [PMID: 33918529]
  12. J Fungi (Basel). 2021 Sep 15;7(9): [PMID: 34575801]
  13. Front Cell Infect Microbiol. 2017 Mar 13;7:55 [PMID: 28348979]
  14. 3 Biotech. 2020 Apr;10(4):163 [PMID: 32206497]
  15. J Ethnopharmacol. 2016 Feb 3;178:125-36 [PMID: 26671210]
  16. Curr Drug Targets. 2021;22(7):770-778 [PMID: 33243117]
  17. BMC Complement Altern Med. 2017 Jan 14;17(1):47 [PMID: 28088220]
  18. BMC Complement Altern Med. 2018 Mar 20;18(1):96 [PMID: 29554903]
  19. Infect Control Hosp Epidemiol. 2016 Nov;37(11):1288-1301 [PMID: 27573805]
  20. Pharmaceutics. 2021 Jun 15;13(6): [PMID: 34203688]
  21. Immunology. 2017 Apr;150(4):495-505 [PMID: 28032341]
  22. Mol Cell Biochem. 2019 Aug;458(1-2):185-195 [PMID: 31004308]
  23. Oxid Med Cell Longev. 2022 Feb 21;2022:3848084 [PMID: 35237379]
  24. Nat Rev Microbiol. 2018 Feb;16(2):91-102 [PMID: 29249812]
  25. Pharmaceutics. 2020 Jul 09;12(7): [PMID: 32660035]
  26. Epidemiol Infect. 2012 Jan;140(1):137-45 [PMID: 21554783]
  27. FEMS Microbiol Rev. 2013 Mar;37(2):130-55 [PMID: 22568581]
  28. Eur J Pharm Biopharm. 2021 Feb;159:198-210 [PMID: 33197529]
  29. Curr Res Microb Sci. 2022 Mar 28;3:100131 [PMID: 35909621]
  30. Planta Med. 2018 Oct;84(15):1068-1093 [PMID: 29847844]
  31. Clin Infect Dis. 2009 Jan 1;48(1):1-12 [PMID: 19035777]
  32. J Biotechnol. 2021 Nov 20;341:155-162 [PMID: 34601019]
  33. J Med Microbiol. 2010 Apr;59(Pt 4):496-498 [PMID: 19959627]
  34. Expert Rev Anti Infect Ther. 2015 May;13(5):567-73 [PMID: 25850806]
  35. J Agric Food Chem. 2021 Nov 3;69(43):12741-12752 [PMID: 34672194]
  36. J Pak Med Assoc. 2021 Dec;71(Suppl 8)(12):S88-S92 [PMID: 35130226]
  37. Future Microbiol. 2019 Jul;14:957-967 [PMID: 31373226]
  38. Antimicrob Agents Chemother. 2009 Mar;53(3):1100-6 [PMID: 19015354]
  39. Sci Rep. 2019 Apr 25;9(1):6538 [PMID: 31024025]
  40. Int J Biol Macromol. 2020 Feb 1;144:380-388 [PMID: 31837368]
  41. Pharmaceutics. 2021 May 08;13(5): [PMID: 34066874]
  42. J Intercult Ethnopharmacol. 2017 Apr 21;6(2):218-222 [PMID: 28512603]
  43. Food Funct. 2014 Sep;5(9):2106-12 [PMID: 24998475]
  44. Molecules. 2021 Jan 19;26(2): [PMID: 33477918]
  45. Biomedicines. 2021 Nov 12;9(11): [PMID: 34829902]
  46. Int J Antimicrob Agents. 2008 Jan;31(1):37-45 [PMID: 18006283]

Word Cloud

Created with Highcharts 10.0.0EA-liposomesmiceEAtreatedactivityEllagicacidbacterialinfectedalsolipidtreatinfectionimmunocompromisedgreatersurvivalloadlungs100 mg/kgfreesignificantlyfunctioninfectionscomesurfacehugenumbersrecentdecadesFurthermoreadoptedgreatabilitynullifymajoritycurrentlyavailableantibioticspurposefindingnontoxicefficienttherapeuticagentanalyzedmultidrug-resistantdemonstratedinhibitedbiofilmformationSinceshowspoorsolubilityaqueousenvironmentnanoparticle-basedliposomalformulationpreparedeffectivenessassessedmurinemodelTherapyimpartedprotectionincreasingdecreasingshowed60%ratecompared20%dosefound32778 ± 12232-treatedlower165667 ± 53048lungtissuesLikewiserestoredliverASTALTkidneyparametersBUNcreatininebroncho-alveolarfluidBALFcontainedquantitiesIL-6IL-1βTNF-αalleviatedfindingstogethersupportpossibleimplicationespeciallyEnhancednanoparticlesimmunosuppressedAcinetobacterbaumanniiImmune-suppressionLiposomes

Similar Articles

Cited By