NRICM101 ameliorates SARS-CoV-2-S1-induced pulmonary injury in K18-hACE2 mice model.

Wen-Chi Wei, Keng-Chang Tsai, Chia-Ching Liaw, Chun-Tang Chiou, Yu-Hwei Tseng, Geng-You Liao, Yu-Chi Lin, Wen-Fei Chiou, Kuo-Tong Liou, I-Shing Yu, Yuh-Chiang Shen, Yi-Chang Su
Author Information
  1. Wen-Chi Wei: National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan.
  2. Keng-Chang Tsai: National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan.
  3. Chia-Ching Liaw: National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan.
  4. Chun-Tang Chiou: National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan.
  5. Yu-Hwei Tseng: National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan.
  6. Geng-You Liao: Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
  7. Yu-Chi Lin: National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan.
  8. Wen-Fei Chiou: National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan.
  9. Kuo-Tong Liou: National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan.
  10. I-Shing Yu: Laboratory Animal Center, National Taiwan University College of Medicine, Taipei, Taiwan.
  11. Yuh-Chiang Shen: National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan.
  12. Yi-Chang Su: National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan.

Abstract

The coronavirus disease 2019 (COVID-19) pandemic continues to represent a challenge for public health globally since transmission of different variants of the virus does not seem to be effectively affected by the current treatments and vaccines. During COVID-19 the outbreak in Taiwan, the patients with mild symptoms were improved after the treatment with NRICM101, a traditional Chinese medicine formula developed by our institute. Here, we investigated the effect and mechanism of action of NRICM101 on improval of COVID-19-induced pulmonary injury using S1 subunit of the SARS-CoV-2 spike protein-induced diffuse alveolar damage (DAD) of hACE2 transgenic mice. The S1 protein induced significant pulmonary injury with the hallmarks of DAD (strong exudation, interstitial and intra-alveolar edema, hyaline membranes, abnormal pneumocyte apoptosis, strong leukocyte infiltration, and cytokine production). NRICM101 effectively reduced all of these hallmarks. We then used next-generation sequencing assays to identify 193 genes that were differentially expressed in the S1+NRICM101 group. Of these, three (, , ) were significantly represented in the top 30 enriched downregulated gene ontology (GO) terms in the S1+NRICM101 group versus the S1+saline group. These terms included the innate immune response, pattern recognition receptor (PRR), and Toll-like receptor signaling pathways. We found that NRICM101 disrupted the interaction of the spike protein of various SARS-CoV-2 variants with the human ACE2 receptor. It also suppressed the expression of cytokines IL-1β, IL-6, TNF-α, MIP-1β, IP-10, and MIP-1α in alveolar macrophages activated by lipopolysaccharide. We conclude that NRICM101 effectively protects against SARS-CoV-2-S1-induced pulmonary injury via modulation of the innate immune response, pattern recognition receptor, and Toll-like receptor signaling pathways to ameliorate DAD.

Keywords

References

  1. Lancet. 2020 Feb 22;395(10224):565-574 [PMID: 32007145]
  2. Circ Res. 2020 May 8;126(10):1456-1474 [PMID: 32264791]
  3. JAMA. 2020 Mar 17;323(11):1061-1069 [PMID: 32031570]
  4. Front Immunol. 2020 Jun 16;11:1446 [PMID: 32612617]
  5. N Engl J Med. 2020 Dec 3;383(23):2255-2273 [PMID: 33264547]
  6. Food Chem Toxicol. 2021 Apr;150:112087 [PMID: 33640537]
  7. Front Nutr. 2022 Mar 14;9:832321 [PMID: 35369061]
  8. Cell Rep. 2021 May 4;35(5):109055 [PMID: 33905739]
  9. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  10. Front Immunol. 2021 Jul 12;12:701501 [PMID: 34322129]
  11. Nature. 2021 May;593(7860):564-569 [PMID: 33780969]
  12. Glob Health Res Policy. 2022 Apr 29;7(1):12 [PMID: 35488305]
  13. Cell Mol Immunol. 2021 May;18(5):1305-1307 [PMID: 33742186]
  14. Lancet Respir Med. 2020 Apr;8(4):420-422 [PMID: 32085846]
  15. Virol J. 2022 May 26;19(1):92 [PMID: 35619180]
  16. Nat Rev Microbiol. 2021 Jul;19(7):409-424 [PMID: 34075212]
  17. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  18. Lancet. 2020 May 2;395(10234):1417-1418 [PMID: 32325026]
  19. N Engl J Med. 2020 Apr 30;382(18):1708-1720 [PMID: 32109013]
  20. Nat Rev Microbiol. 2022 May;20(5):270-284 [PMID: 35354968]
  21. J Exp Med. 2021 Mar 1;218(3): [PMID: 33231615]
  22. Nature. 2003 Nov 27;426(6965):450-4 [PMID: 14647384]
  23. J Nutr. 2009 May;139(5):828-34 [PMID: 19297425]
  24. Lancet Respir Med. 2020 Dec;8(12):1201-1208 [PMID: 32861276]
  25. Histopathology. 2020 Aug;77(2):198-209 [PMID: 32364264]
  26. Lancet Infect Dis. 2020 Oct;20(10):1135-1140 [PMID: 32526193]
  27. Nature. 2021 Jul;595(7865):114-119 [PMID: 33915568]
  28. Nature. 2020 May;581(7807):221-224 [PMID: 32225175]
  29. Am J Respir Crit Care Med. 2021 Dec 1;204(11):1241-1243 [PMID: 34705609]
  30. Lancet Respir Med. 2020 Dec;8(12):1209-1218 [PMID: 32861275]
  31. Nature. 2020 Dec;588(7836):E6 [PMID: 33199918]
  32. Front Pharmacol. 2022 Mar 21;13:744439 [PMID: 35387343]
  33. Int J Infect Dis. 2020 Jun;95:363-370 [PMID: 32335340]
  34. Eur J Clin Microbiol Infect Dis. 2021 May;40(5):905-919 [PMID: 33389262]
  35. Cell Res. 2020 Aug;30(8):708-710 [PMID: 32632255]
  36. Front Pharmacol. 2021 Mar 08;12:632677 [PMID: 33762954]
  37. Pharmacol Res. 2022 Oct;184:106424 [PMID: 36064077]
  38. Pharmacol Res. 2022 Oct;184:106412 [PMID: 36007774]
  39. Lancet. 2020 Mar 28;395(10229):1033-1034 [PMID: 32192578]
  40. Am J Physiol Lung Cell Mol Physiol. 2021 Aug 1;321(2):L477-L484 [PMID: 34156871]
  41. Biomed Pharmacother. 2021 Jan;133:111037 [PMID: 33249281]
  42. Nature. 2021 Jul;595(7865):107-113 [PMID: 33915569]
  43. Cell. 2021 Jan 7;184(1):149-168.e17 [PMID: 33278357]
  44. Mol Cell. 2002 Nov;10(5):995-1005 [PMID: 12453409]
  45. Nat Rev Immunol. 2020 Jun;20(6):363-374 [PMID: 32346093]

Word Cloud

Created with Highcharts 10.0.0NRICM101injuryreceptorpulmonaryCOVID-19effectivelyDADgrouppatternrecognitionvariantstraditionalChinesemedicineS1SARS-CoV-2spikealveolarmiceproteinhallmarksstrongS1+NRICM101termsinnateimmuneresponseToll-likesignalingpathwaysSARS-CoV-2-S1-inducedcoronavirusdisease2019pandemiccontinuesrepresentchallengepublichealthgloballysincetransmissiondifferentvirusseemaffectedcurrenttreatmentsvaccinesoutbreakTaiwanpatientsmildsymptomsimprovedtreatmentformuladevelopedinstituteinvestigatedeffectmechanismactionimprovalCOVID-19-inducedusingsubunitprotein-induceddiffusedamagehACE2transgenicinducedsignificantexudationinterstitialintra-alveolaredemahyalinemembranesabnormalpneumocyteapoptosisleukocyteinfiltrationcytokineproductionreducedusednext-generationsequencingassaysidentify193genesdifferentiallyexpressedthreesignificantlyrepresentedtop30enricheddownregulatedgeneontologyGOversusS1+salineincludedPRRfounddisruptedinteractionvarioushumanACE2alsosuppressedexpressioncytokinesIL-1βIL-6TNF-αMIP-1βIP-10MIP-1αmacrophagesactivatedlipopolysaccharideconcludeprotectsviamodulationameliorateamelioratesK18-hACE2modellungreceptors

Similar Articles

Cited By