Longitudinal changes in white matter as measured with diffusion tensor imaging in adult-onset myotonic dystrophy type 1.

Timothy R Koscik, Ellen van der Plas, Jeffrey D Long, Stephen Cross, Laurie Gutmann, Sarah A Cumming, Darren G Monckton, Richard K Shields, Vincent Magnotta, Peggy C Nopoulos
Author Information
  1. Timothy R Koscik: Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, 13 Children's Way, Little Rock, AR 72202-3591, USA.
  2. Ellen van der Plas: Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, 13 Children's Way, Little Rock, AR 72202-3591, USA.
  3. Jeffrey D Long: Department of Psychiatry, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Biostatistics, College of Public Health, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA.
  4. Stephen Cross: Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, 13 Children's Way, Little Rock, AR 72202-3591, USA.
  5. Laurie Gutmann: Department of Neurology, School of Medicine, Indiana University, 362W 15th St, Indianapolis, IN 46202, USA.
  6. Sarah A Cumming: Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK.
  7. Darren G Monckton: Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK.
  8. Richard K Shields: Department of Radiology, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA.
  9. Vincent Magnotta: Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA.
  10. Peggy C Nopoulos: Department of Psychiatry, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA; Department of Neurology, School of Medicine, Indiana University, 362W 15th St, Indianapolis, IN 46202, USA; Department of Pediatrics, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA. Electronic address: peggy-nopoulos@uiowa.edu.

Abstract

Myotonic dystrophy type 1 is characterized by neuromuscular degeneration. Our objective was to compare change in white matter microstructure (fractional anisotropy, radial and axial diffusivity), and functional/clinical measures. Participants underwent yearly neuroimaging and neurocognitive assessments over three-years. Assessments encompassed full-scale intelligence, memory, language, visuospatial skills, attention, processing speed, and executive function, as well as clinical symptoms of muscle/motor function, apathy, and hypersomnolence. Mixed effects models were used to examine differences. 69 healthy adults (66.2% women) and 41 DM1 patients (70.7% women) provided 156 and 90 observations, respectively. There was a group by elapsed time interaction for cerebral white matter, where DM1 patients exhibited declines in white matter (all p<0.05). Likewise, DM1 patients either declined (motor), improved more slowly (intelligence), or remained stable (executive function) for functional outcomes. White matter was associated with functional performance; intelligence was predicted by axial (r = 0.832; p<0.01) and radial diffusivity (r = 0.291, p<0.05), and executive function was associated with anisotropy (r = 0.416, p<0.001), and diffusivity (axial: r = 0.237, p = 0.05 and radial: r = 0.300, p<0.05). Indices of white matter health are sensitive to progression in DM1. These results are important for clinical trial design, which utilize short intervals to establish treatment efficacy.

Keywords

References

  1. J Neuromuscul Dis. 2019;6(3):321-332 [PMID: 31306140]
  2. J Clin Neurosci. 2019 Oct;68:92-96 [PMID: 31371188]
  3. Ann Clin Transl Neurol. 2020 Oct;7(10):1802-1815 [PMID: 32881379]
  4. Muscle Nerve. 2018 May;57(5):742-748 [PMID: 29193182]
  5. Sci Rep. 2021 Mar 1;11(1):4886 [PMID: 33649422]
  6. Philos Trans R Soc Lond B Biol Sci. 2001 Aug 29;356(1412):1293-322 [PMID: 11545704]
  7. Neuroimage. 2011 Feb 1;54(3):2033-44 [PMID: 20851191]
  8. Sleep. 2003 Dec 15;26(8):1049-54 [PMID: 14746389]
  9. J Neurosci Res. 2017 Jan 2;95(1-2):24-39 [PMID: 27870427]
  10. Front Neurol. 2018 Feb 27;9:92 [PMID: 29535676]
  11. J Neurol Neurosurg Psychiatry. 2007 Aug;78(8):800-6 [PMID: 17449544]
  12. Arch Gen Psychiatry. 1961 Jun;4:561-71 [PMID: 13688369]
  13. J Neurol Neurosurg Psychiatry. 2015 Dec;86(12):1291-8 [PMID: 25669748]
  14. PLoS One. 2014 Aug 12;9(8):e104697 [PMID: 25115999]
  15. Eur J Neurol. 2016 Sep;23(9):1471-6 [PMID: 27323306]
  16. Mov Disord. 2023 Jan;38(1):113-122 [PMID: 36318082]
  17. Ann Clin Transl Neurol. 2020 Dec;7(12):2508-2523 [PMID: 33146954]
  18. Neuromuscul Disord. 2012 Jun;22(6):483-91 [PMID: 22290140]
  19. Arch Clin Neuropsychol. 2017 Jun 01;32(4):401-412 [PMID: 28164212]
  20. Brain. 2011 Dec;134(Pt 12):3530-46 [PMID: 22131273]
  21. Front Neurol. 2022 Jan 20;12:791065 [PMID: 35126292]
  22. Alzheimers Dement (Amst). 2020 Jul 09;12(1):e12055 [PMID: 32671181]
  23. Front Neurol. 2018 Aug 21;9:646 [PMID: 30186217]
  24. Neuroimage Clin. 2016 Jun 15;12:190-7 [PMID: 27437180]
  25. Biochim Biophys Acta. 2015 Apr;1852(4):594-606 [PMID: 24882752]
  26. Sci Rep. 2018 Oct 22;8(1):15592 [PMID: 30349069]
  27. Front Neurol. 2021 Jul 01;12:700796 [PMID: 34276551]
  28. Neurology. 1975 Oct;25(10):907-10 [PMID: 1237101]
  29. Muscle Nerve. 2021 Apr;63(4):553-562 [PMID: 33462896]
  30. Neuroimage Clin. 2016 May 03;11:678-685 [PMID: 27330968]
  31. Neuromuscul Disord. 2017 Jan;27(1):61-72 [PMID: 27919548]
  32. Appl Neuropsychol. 2008;15(4):241-9 [PMID: 19023741]
  33. JAMA Neurol. 2014 May;71(5):603-11 [PMID: 24664202]
  34. Muscle Nerve. 2022 May;65(5):560-567 [PMID: 35179228]
  35. Neurol Sci. 2007 Mar;28(1):9-15 [PMID: 17385090]
  36. Diagnostics (Basel). 2022 Sep 24;12(10): [PMID: 36291994]
  37. Neuroimage Clin. 2019;24:102078 [PMID: 31795042]
  38. Neuroimage. 2017 Nov 1;161:149-170 [PMID: 28826946]
  39. Brain Commun. 2022 May 17;4(3):fcac111 [PMID: 35611304]
  40. Neurology. 2017 Aug 29;89(9):960-969 [PMID: 28768849]
  41. Neuroimage. 2013 Oct 15;80:62-79 [PMID: 23684880]
  42. Neuroimage. 2003 Oct;20(2):870-88 [PMID: 14568458]
  43. Neurology. 2001 Feb 13;56(3):336-40 [PMID: 11171898]
  44. Psychiatry Res. 1991 Aug;38(2):143-62 [PMID: 1754629]
  45. Neurol Genet. 2021 Mar 18;7(2):e577 [PMID: 33912661]
  46. J Neurol. 2002 Sep;249(9):1175-82 [PMID: 12242535]
  47. Sci Rep. 2022 Mar 7;12(1):3988 [PMID: 35256728]
  48. Front Aging Neurosci. 2022 Apr 11;14:841711 [PMID: 35478698]
  49. J Neurol. 2004 Jun;251(6):710-4 [PMID: 15311347]
  50. Neuropsychopharmacology. 2019 Jan;44(1):71-85 [PMID: 29930385]
  51. Hum Mol Genet. 2012 Aug 15;21(16):3558-67 [PMID: 22595968]
  52. J Neurosci Res. 2021 Jan;99(1):190-199 [PMID: 32056295]
  53. J Affect Disord. 2019 May 1;250:260-269 [PMID: 30870776]
  54. Front Neurol. 2018 Oct 02;9:780 [PMID: 30333784]
  55. Acta Radiol. 2005 Feb;46(1):104-9 [PMID: 15841748]
  56. J Neuroimaging. 2021 Jan;31(1):192-198 [PMID: 32936994]
  57. Neuroradiology. 2021 Jul;63(7):1019-1029 [PMID: 33237431]
  58. Arch Neurol. 1988 Jan;45(1):36-7 [PMID: 3337674]
  59. J Neurol Neurosurg Psychiatry. 2019 Aug;90(8):870-881 [PMID: 30967444]
  60. J Neurol. 2020 Feb;267(2):461-468 [PMID: 31673761]
  61. J Neurol Sci. 2014 Jun 15;341(1-2):73-8 [PMID: 24768314]
  62. Neuroimage. 2007 Jul 1;36(3):630-44 [PMID: 17481925]
  63. Neuroimage. 2016 Jan 15;125:1063-1078 [PMID: 26481672]
  64. PLoS One. 2019 Mar 7;14(3):e0213381 [PMID: 30845252]
  65. Neuroimage Clin. 2019;21:101615 [PMID: 30522973]
  66. Neurology. 1997 Jan;48(1):33-7 [PMID: 9008490]
  67. Neuroradiol J. 2016 Feb;29(1):36-45 [PMID: 26755488]
  68. Yonsei Med J. 2017 Jul;58(4):807-815 [PMID: 28540995]
  69. J Neurol. 2008 Nov;255(11):1737-42 [PMID: 18821050]
  70. Neuroimage. 2002 Nov;17(3):1429-36 [PMID: 12414282]
  71. J Neuropsychol. 2020 Mar;14(1):121-134 [PMID: 31407859]
  72. Neuroimage. 2008 Jan 1;39(1):336-47 [PMID: 17931890]

Grants

  1. P50 HD103556/NICHD NIH HHS
  2. R01 NS094387/NINDS NIH HHS
  3. S10 OD025025/NIH HHS

MeSH Term

Humans
Adult
Female
Male
Diffusion Tensor Imaging
White Matter
Myotonic Dystrophy
Executive Function
Anisotropy
Brain

Word Cloud

Created with Highcharts 10.0.0matterwhitefunctionDM105p<0diffusivityintelligenceexecutivepatientsr = 0dystrophytype1anisotropyradialaxialclinicalwomenfunctionalWhiteassociatedprogressionMyotoniccharacterizedneuromusculardegenerationobjectivecomparechangemicrostructurefractionalfunctional/clinicalmeasuresParticipantsunderwentyearlyneuroimagingneurocognitiveassessmentsthree-yearsAssessmentsencompassedfull-scalememorylanguagevisuospatialskillsattentionprocessingspeedwellsymptomsmuscle/motorapathyhypersomnolenceMixedeffectsmodelsusedexaminedifferences69healthyadults662%41707%provided15690observationsrespectivelygroupelapsedtimeinteractioncerebralexhibiteddeclinesall p<0Likewiseeitherdeclinedmotorimprovedslowlyremainedstableoutcomesperformancepredicted83201291416001axial: r = 0237p = 0radial: r = 0300IndiceshealthsensitiveresultsimportanttrialdesignutilizeshortintervalsestablishtreatmentefficacyLongitudinalchangesmeasureddiffusiontensorimagingadult-onsetmyotonicCognitiveDTIDiffusionImagingDisease

Similar Articles

Cited By