The effects of water temperature on cerebral blood flow during aquatic exercise.

Howard H Carter, Oliver Pienaar, Alexander Coleman, Jem L Cheng, Maureen J MacDonald, Louise H Naylor, Daniel J Green
Author Information
  1. Howard H Carter: School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, WA, 6009, Canada. ORCID
  2. Oliver Pienaar: School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, WA, 6009, Canada.
  3. Alexander Coleman: School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, WA, 6009, Canada.
  4. Jem L Cheng: Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
  5. Maureen J MacDonald: Department of Kinesiology, McMaster University, Hamilton, ON, Canada.
  6. Louise H Naylor: School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, WA, 6009, Canada.
  7. Daniel J Green: School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, WA, 6009, Canada. danny.green@uwa.edu.au.

Abstract

PURPOSE: Recent studies suggest that episodic increases in cerebral blood flow (CBF) may contribute to the improvement in brain health associated with exercise training. Optimising CBF during exercise may enhance this benefit. Water immersion in ~ 30-32 °C augments CBF at rest and during exercise; however, the impact of water temperature on the CBF response has not been investigated. We hypothesised that cycle ergometry in water would increase CBF compared to land-based exercise, and that warm water would attenuate the CBF benefits.
METHODS: Eleven young heathy participants (nine males; 23.8 ± 3.1 yrs) completed 30 min of resistance-matched cycle exercise in three separate conditions; non-immersion (Land), 32 °C and 38 °C water immersion up to the level of the waist. Middle cerebral artery velocity (MCAv), blood pressure, and respiratory measures were assessed throughout the exercise bouts.
RESULTS: Core temperature was significantly higher in the 38 °C immersion than 32 °C (+ 0.84 ± 0.24 vs + 0.04 ± 0.16, P < 0.001), whilst mean arterial pressure was lower during 38 °C exercise compared to Land (84 ± 8 vs 100 ± 14 mmHg, P < 0.001) and 32 °C (92 ± 9, P = 0.03). MCAv was higher in 32 °C immersion compared to the Land and 38 °C conditions throughout the exercise bout (68 ± 10 vs 64 ± 11 vs 62 ± 12 cm/s, P = 0.03 and P = 0.02, respectively).
CONCLUSION: Our findings suggest that cycle exercise in warm water attenuates the beneficial impact of water immersion on CBF velocity due to redistribution of blood flow to subserve thermoregulatory demand. Our findings suggest that, whilst water-based exercise can have beneficial effects on cerebrovascular function, water temperature is a key determinant of this benefit.

Keywords

References

  1. Med Sci Sports Exerc. 2021 Oct 1;53(10):2093-2100 [PMID: 33867500]
  2. J Physiol. 2020 Mar;598(5):943-954 [PMID: 31900940]
  3. J Appl Physiol (1985). 2001 Aug;91(2):929-37 [PMID: 11457812]
  4. J Physiol. 2001 Jul 1;534(Pt 1):279-86 [PMID: 11433008]
  5. Circ Res. 2006 Nov 10;99(10):1132-40 [PMID: 17038638]
  6. Stroke. 1993 Jan;24(1):105-9; discussion 109-10 [PMID: 8418532]
  7. Hypertension. 2016 Nov;68(5):1217-1224 [PMID: 27572152]
  8. Age Ageing. 2017 Mar 1;46(2):245-249 [PMID: 27932366]
  9. J Neurosurg. 1982 Dec;57(6):769-74 [PMID: 7143059]
  10. Physiol Rev. 2017 Apr;97(2):495-528 [PMID: 28151424]
  11. ISRN Neurol. 2011;2011:953818 [PMID: 22389836]
  12. Pflugers Arch. 2013 Feb;465(2):197-208 [PMID: 23291710]
  13. Neurology. 2020 May 26;94(21):e2245-e2257 [PMID: 32404355]
  14. Circ Res. 1991 Sep;69(3):697-705 [PMID: 1873864]
  15. Med Sci Sports Exerc. 2015 Feb;47(2):299-306 [PMID: 24977699]
  16. J Physiol. 2009 Dec 1;587(Pt 23):5551-8 [PMID: 19736305]
  17. J Physiol. 2022 Mar;600(6):1385-1403 [PMID: 34904229]
  18. Mayo Clin Proc. 2018 Aug;93(8):1111-1121 [PMID: 30077204]
  19. Physiol Rep. 2019 Oct;7(20):e14247 [PMID: 31637867]
  20. Nat Rev Neurosci. 2008 Jan;9(1):58-65 [PMID: 18094706]
  21. Med Sci Sports Exerc. 2017 Jul;49(7):1305-1312 [PMID: 28166116]
  22. Circulation. 2003 Jul 1;107(25):3152-8 [PMID: 12810615]
  23. Ann Neurol. 2003 Nov;54(5):582-90 [PMID: 14595647]
  24. Lancet Neurol. 2021 Oct;20(10):795-820 [PMID: 34487721]
  25. Am J Physiol Regul Integr Comp Physiol. 2014 May;306(9):R636-40 [PMID: 24553298]

Grants

  1. N62909-21-1-2001/Office of Naval Research Global

MeSH Term

Male
Humans
Water
Temperature
Exercise
Body Temperature Regulation
Cerebrovascular Circulation
Immersion
Blood Flow Velocity

Chemicals

Water

Word Cloud

Created with Highcharts 10.0.0exercisewaterCBFimmersionbloodflowtemperature32 °C38 °CsuggestcerebralcyclecomparedLandvsP = 0maybenefitWaterimpactwarmconditionsvelocityMCAvpressurethroughouthigherP < 0001whilst03findingsbeneficialeffectsPURPOSE:RecentstudiesepisodicincreasescontributeimprovementbrainhealthassociatedtrainingOptimisingenhancein ~ 30-32 °Caugmentsresthoweverresponseinvestigatedhypothesisedergometryincreaseland-basedattenuatebenefitsMETHODS:Elevenyoungheathyparticipantsninemales238 ± 31 yrscompleted30 minresistance-matchedthreeseparatenon-immersionlevelwaistMiddlearteryrespiratorymeasuresassessedboutsRESULTS:Coresignificantly+ 084 ± 024vs + 004 ± 016meanarteriallower84 ± 8100 ± 14 mmHg92 ± 9bout68 ± 1064 ± 1162 ± 12 cm/s02respectivelyCONCLUSION:attenuatesdueredistributionsubservethermoregulatorydemandwater-basedcancerebrovascularfunctionkeydeterminantaquaticAquaticCerebralThermoregulation

Similar Articles

Cited By