Decoding the fibromelanosis locus complex chromosomal rearrangement of black-bone chicken: genetic differentiation, selective sweeps and protein-coding changes in Kadaknath chicken.

Sagar Sharad Shinde, Ashutosh Sharma, Nagarjun Vijay
Author Information
  1. Sagar Sharad Shinde: Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
  2. Ashutosh Sharma: Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.
  3. Nagarjun Vijay: Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India.

Abstract

Black-bone chicken (BBC) meat is popular for its distinctive taste and texture. A complex chromosomal rearrangement at the fibromelanosis () locus on the 20th chromosome results in increased endothelin-3 () gene expression and is responsible for melanin hyperpigmentation in BBC. We use public long-read sequencing data of the Silkie breed to resolve high-confidence haplotypes at the locus spanning both Dup1 and Dup2 regions and establish that the scenario is correct of the three possible scenarios of the complex chromosomal rearrangement. The relationship between Chinese and Korean BBC breeds with Kadaknath native to India is underexplored. Our data from whole-genome re-sequencing establish that all BBC breeds, including Kadaknath, share the complex chromosomal rearrangement junctions at the fibromelanosis () locus. We also identify two locus proximal regions (∼70 Kb and ∼300 Kb) with signatures of selection unique to Kadaknath. These regions harbor several genes with protein-coding changes, with the bactericidal/permeability-increasing-protein-like gene having two Kadaknath-specific changes within protein domains. Our results indicate that protein-coding changes in the bactericidal/permeability-increasing-protein-like gene hitchhiked with the locus in Kadaknath due to close physical linkage. Identifying this locus proximal selective sweep sheds light on the genetic distinctiveness of Kadaknath compared to other BBC.

Keywords

References

  1. Brief Bioinform. 2018 Jan 1;19(1):23-40 [PMID: 27742661]
  2. Poult Sci. 2021 May;100(5):101035 [PMID: 33744609]
  3. Mol Ecol. 2005 Jul;14(8):2611-20 [PMID: 15969739]
  4. Genomics. 2022 Mar;114(2):110298 [PMID: 35134497]
  5. Mol Biol Evol. 2015 Jul;32(7):1880-9 [PMID: 25788450]
  6. Dev Comp Immunol. 2011 Mar;35(3):285-95 [PMID: 20959152]
  7. Plant Biotechnol J. 2022 Jun;20(6):1110-1121 [PMID: 35178867]
  8. Nat Commun. 2019 Sep 13;10(1):4201 [PMID: 31519986]
  9. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  10. Evolution. 2013 Sep;67(9):2577-91 [PMID: 24033168]
  11. Bioinformatics. 2018 Jul 1;34(13):i115-i123 [PMID: 29949971]
  12. Biology (Basel). 2023 Jun 27;12(7): [PMID: 37508350]
  13. Nat Commun. 2020 Nov 16;11(1):5817 [PMID: 33199703]
  14. PLoS One. 2020 Nov 10;15(11):e0241038 [PMID: 33170846]
  15. PLoS Genet. 2019 Apr 29;15(4):e1007989 [PMID: 31034467]
  16. Nat Commun. 2021 Apr 28;12(1):1935 [PMID: 33911078]
  17. Nucleic Acids Res. 2001 Jan 1;29(1):308-11 [PMID: 11125122]
  18. Genet Mol Res. 2014 Apr 29;13(2):3275-82 [PMID: 24841659]
  19. Mol Biol Evol. 2022 Apr 10;39(4): [PMID: 35325213]
  20. Mol Ecol. 2020 Jul;29(14):2535-2549 [PMID: 32246540]
  21. Genes (Basel). 2022 Nov 17;13(11): [PMID: 36421818]
  22. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  23. Genome Biol. 2021 Jan 5;22(1):13 [PMID: 33402202]
  24. Evolution. 2010 Nov;64(11):3254-72 [PMID: 20550573]
  25. Anim Genet. 2021 Aug;52(4):385-394 [PMID: 34060099]
  26. Nat Commun. 2020 Jul 7;11(1):3403 [PMID: 32636372]
  27. PLoS Biol. 2020 Feb 27;18(2):e3000610 [PMID: 32108180]
  28. BMC Bioinformatics. 2020 Jul 29;21(1):337 [PMID: 32727359]
  29. G3 (Bethesda). 2021 Sep 27;11(10): [PMID: 34568922]
  30. Front Plant Sci. 2018 Jul 11;9:995 [PMID: 30050550]
  31. PLoS Genet. 2013;9(1):e1003183 [PMID: 23359636]
  32. Nat Methods. 2012 Nov;9(11):1107-12 [PMID: 23042453]
  33. Mol Biol Evol. 2012 Jan;29(1):101-11 [PMID: 21816865]
  34. Genome Biol. 2020 Feb 7;21(1):30 [PMID: 32033565]
  35. BMC Genomics. 2016 May 04;17:320 [PMID: 27142387]
  36. BMC Genomics. 2020 Jul 23;21(1):511 [PMID: 32703156]
  37. J Adv Res. 2016 Sep;7(5):615-23 [PMID: 27489728]
  38. Sci Rep. 2019 Sep 20;9(1):13649 [PMID: 31541148]
  39. BMC Genomics. 2015 Jun 23;16:474 [PMID: 26100605]
  40. Bioinformatics. 2017 May 15;33(10):1581-1582 [PMID: 28093408]
  41. Nat Protoc. 2017 Jun;12(6):1151-1176 [PMID: 28492527]
  42. Sci Data. 2020 Nov 17;7(1):399 [PMID: 33203859]
  43. Poult Sci. 2007 Oct;86(10):2059-94 [PMID: 17878436]
  44. Mol Phylogenet Evol. 2021 May;158:107044 [PMID: 33346111]
  45. BMC Genomics. 2022 Mar 2;23(1):173 [PMID: 35236293]
  46. C R Biol. 2011 Mar;334(3):197-204 [PMID: 21377614]
  47. Ecol Evol. 2022 Dec 08;12(12):e9602 [PMID: 36514551]
  48. Br Poult Sci. 2023 Apr;64(2):214-223 [PMID: 36503342]
  49. J Comput Biol. 2015 Jun;22(6):498-509 [PMID: 25658651]
  50. Anim Biotechnol. 2022 Nov;33(6):1045-1055 [PMID: 33427028]
  51. Gigascience. 2021 Feb 16;10(2): [PMID: 33590861]
  52. Genome Biol Evol. 2013;5(7):1376-92 [PMID: 23814129]
  53. Clin Vaccine Immunol. 2017 May 5;24(5): [PMID: 28331077]
  54. Genetics. 2018 Oct;210(2):719-731 [PMID: 30131346]
  55. Nature. 2010 Mar 25;464(7288):587-91 [PMID: 20220755]
  56. Poult Sci. 2008 Jan;87(1):160-9 [PMID: 18079466]
  57. Nature. 2020 Dec;588(7837):284-289 [PMID: 33239781]
  58. Proc Natl Acad Sci U S A. 2022 Jun 14;119(24):e2121978119 [PMID: 35666876]
  59. J Hered. 2010 May-Jun;101(3):339-50 [PMID: 20064842]
  60. Genome Biol. 2017 Aug 24;18(1):161 [PMID: 28838319]
  61. PLoS One. 2014 Oct 21;9(10):e111299 [PMID: 25333370]
  62. Biochem Soc Trans. 2003 Aug;31(Pt 4):785-90 [PMID: 12887306]
  63. Cell Res. 2020 Aug;30(8):693-701 [PMID: 32581344]
  64. Vet Immunol Immunopathol. 1992 Jun;33(1-2):89-102 [PMID: 1378670]
  65. Gigascience. 2017 Oct 1;6(10):1-16 [PMID: 29020750]
  66. Bioinformatics. 2018 Jul 1;34(13):i105-i114 [PMID: 29949989]
  67. Bioinformatics. 2011 Nov 1;27(21):2987-93 [PMID: 21903627]
  68. J Food Sci Technol. 2017 Sep;54(10):2997-3009 [PMID: 28974784]
  69. PLoS Biol. 2012 Feb;10(2):e1001258 [PMID: 22346734]
  70. Environ Sci Pollut Res Int. 2019 Dec;26(36):37212-37227 [PMID: 31748990]
  71. Front Genet. 2015 Feb 17;6:44 [PMID: 25741364]
  72. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  73. PeerJ. 2021 Jan 13;9:e10728 [PMID: 33520473]
  74. BMC Genomics. 2014 Feb 26;15:162 [PMID: 24571581]
  75. Front Genet. 2014 Aug 26;5:295 [PMID: 25206365]
  76. Genetics. 2012 Feb;190(2):627-38 [PMID: 22135351]
  77. Poult Sci. 2011 Feb;90(2):314-20 [PMID: 21248327]
  78. Fly (Austin). 2012 Apr-Jun;6(2):80-92 [PMID: 22728672]
  79. Mol Ecol Resour. 2015 Sep;15(5):1179-91 [PMID: 25684545]
  80. PLoS Genet. 2011 Dec;7(12):e1002412 [PMID: 22216010]
  81. BMC Genomics. 2020 Apr 20;21(1):316 [PMID: 32312230]
  82. Mol Ecol. 2012 Oct;21(20):4925-30 [PMID: 22998190]
  83. Sci Rep. 2022 Mar 3;12(1):3555 [PMID: 35241766]
  84. Foods. 2022 Nov 11;11(22): [PMID: 36429195]
  85. Curr Opin Immunol. 1998 Feb;10(1):45-9 [PMID: 9523110]
  86. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  87. Genetics. 2013 Nov;195(3):693-702 [PMID: 24026093]
  88. Genome Biol Evol. 2019 Jul 1;11(7):1847-1856 [PMID: 31263886]
  89. Gigascience. 2018 Jul 1;7(7): [PMID: 30010758]
  90. Nat Methods. 2010 Apr;7(4):248-9 [PMID: 20354512]
  91. Bioinformatics. 1998;14(1):68-73 [PMID: 9520503]
  92. Mol Immunol. 2022 Sep;149:174-187 [PMID: 35908437]
  93. Genetics. 2014 Mar;196(3):829-40 [PMID: 24381334]
  94. BMC Bioinformatics. 2014 Nov 25;15:356 [PMID: 25420514]
  95. Sci Adv. 2022 Jun 17;8(24):eabn9215 [PMID: 35704579]
  96. Poult Sci. 2023 Jul;102(7):102721 [PMID: 37186968]
  97. PLoS Genet. 2008 Feb 29;4(2):e1000010 [PMID: 18454198]
  98. Nat Methods. 2016 Dec;13(12):1050-1054 [PMID: 27749838]
  99. Mol Biol Evol. 2015 Feb;32(2):495-509 [PMID: 25415966]
  100. J Vet Med Sci. 2000 Apr;62(4):391-5 [PMID: 10823725]
  101. PLoS One. 2016 Apr 22;11(4):e0154045 [PMID: 27105425]
  102. Bioinformatics. 2007 Apr 15;23(8):1026-8 [PMID: 17309896]
  103. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]
  104. PLoS One. 2017 Apr 5;12(4):e0173147 [PMID: 28379963]
  105. Nat Methods. 2011 Dec 04;9(2):179-81 [PMID: 22138821]
  106. Mol Ecol. 2017 Jul;26(14):3594-3602 [PMID: 28544181]
  107. Genetics. 2006 May;173(1):419-34 [PMID: 16204214]
  108. Bioinformatics. 2012 Apr 15;28(8):1176-7 [PMID: 22402612]
  109. Biochem Soc Trans. 2011 Aug;39(4):1045-50 [PMID: 21787345]

Word Cloud

Created with Highcharts 10.0.0locusKadaknathBBCcomplexchromosomalrearrangementfibromelanosischangeschickengeneregionsprotein-codinggeneticresultsdataestablishbreedstwoproximalbactericidal/permeability-increasing-protein-likelinkageselectiveblack-boneBlack-bonemeatpopulardistinctivetastetexture20thchromosomeincreasedendothelin-3expressionresponsiblemelaninhyperpigmentationusepubliclong-readsequencingSilkiebreedresolvehigh-confidencehaplotypesspanningDup1Dup2scenariocorrectthreepossiblescenariosrelationshipChineseKoreannativeIndiaunderexploredwhole-genomere-sequencingincludingsharejunctionsalsoidentify∼70Kb∼300 KbsignaturesselectionuniqueharborseveralgenesKadaknath-specificwithinproteindomainsindicatehitchhikeddueclosephysicalIdentifyingsweepshedslightdistinctivenesscomparedDecodingchicken:differentiationsweepsFm

Similar Articles

Cited By