One-Pot Biosynthesis of Carbon-Coated Silver Nanoparticles Using Palm Leaves as a Reductant and a Carbon Source.

Xuchao Jian, Ying Wang, Rukang Zhu, Yingying Pan, Huangqing Ye, Xiping Zeng
Author Information
  1. Xuchao Jian: Research and Develop Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen 518116, China.
  2. Ying Wang: Research and Develop Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen 518116, China.
  3. Rukang Zhu: Research and Develop Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen 518116, China.
  4. Yingying Pan: Research and Develop Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen 518116, China.
  5. Huangqing Ye: International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. ORCID
  6. Xiping Zeng: Research and Develop Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen 518116, China. ORCID

Abstract

In this study, carbon-coated silver nanoparticles (Ag@C NPs) were synthesized with a one-pot hydrothermal method using palm leaves as a reductant and a carbon source. SEM, TEM, XRD, Raman, and UV-vis analyses were employed to characterize the as-prepared Ag@C NPs. Results showed that the diameter of silver nanoparticles (Ag NPs) and the coating thickness could be controlled by changing the amount of biomass and the reaction temperature. The diameter ranged from 68.33 to 143.15 nm, while the coating thickness ranged from 1.74 to 4.70 nm. As the biomass amount and the reaction temperature increased, the diameter of Ag NPs and the coating thickness became larger. Thus, this work provided a green, simple, and feasible method for the preparation of metal nanocrystals.

References

  1. Soft Matter. 2022 Apr 13;18(15):3031-3040 [PMID: 35355035]
  2. Carbohydr Polym. 2015 Mar 6;117:70-77 [PMID: 25498610]
  3. Phys Chem Chem Phys. 2015 Nov 14;17(42):27981-95 [PMID: 26024211]
  4. ACS Appl Mater Interfaces. 2020 Jun 3;12(22):25494-25502 [PMID: 32401012]
  5. Int J Mol Sci. 2019 Feb 17;20(4): [PMID: 30781560]
  6. Int J Biol Macromol. 2022 Apr 30;205:169-177 [PMID: 35181323]
  7. Chem Soc Rev. 2010 Jan;39(1):103-16 [PMID: 20023841]
  8. Chem Rev. 2021 Jan 27;121(2):834-881 [PMID: 32585087]
  9. Small. 2007 Apr;3(4):672-82 [PMID: 17299827]
  10. Langmuir. 2013 Dec 31;29(52):16135-40 [PMID: 24308456]
  11. Langmuir. 2015 Oct 27;31(42):11605-12 [PMID: 26447769]
  12. Chem Commun (Camb). 2020 Oct 7;56(78):11645-11648 [PMID: 33000783]
  13. Nano Lett. 2013 May 8;13(5):2204-8 [PMID: 23611150]
  14. ChemSusChem. 2011 May 23;4(5):566-79 [PMID: 21322117]
  15. J Am Chem Soc. 2003 Nov 19;125(46):13940-1 [PMID: 14611213]
  16. Environ Sci Technol. 2012 Jul 3;46(13):7390-7 [PMID: 22667990]
  17. Adv Colloid Interface Sci. 2010 Apr 22;156(1-2):1-13 [PMID: 20181326]
  18. Langmuir. 2012 May 29;28(21):8140-8 [PMID: 22546237]
  19. ACS Nano. 2007 Dec;1(5):429-39 [PMID: 19206664]

Word Cloud

Created with Highcharts 10.0.0NPsdiametercoatingthicknesssilvernanoparticlesAg@CmethodAgamountbiomassreactiontemperaturerangednmstudycarbon-coatedsynthesizedone-pothydrothermalusingpalmleavesreductantcarbonsourceSEMTEMXRDRamanUV-visanalysesemployedcharacterizeas-preparedResultsshowedcontrolledchanging683314315174470increasedbecamelargerThusworkprovidedgreensimplefeasiblepreparationmetalnanocrystalsOne-PotBiosynthesisCarbon-CoatedSilverNanoparticlesUsingPalmLeavesReductantCarbonSource

Similar Articles

Cited By