Legionella pneumophila Rhizoferrin Promotes Bacterial Biofilm Formation and Growth within Amoebae and Macrophages.

Alberto E Lopez, Lubov S Grigoryeva, Armando Barajas, Nicholas P Cianciotto
Author Information
  1. Alberto E Lopez: Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA.
  2. Lubov S Grigoryeva: Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA.
  3. Armando Barajas: Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA.
  4. Nicholas P Cianciotto: Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA. ORCID

Abstract

Previously, we showed that Legionella pneumophila secretes rhizoferrin, a polycarboxylate siderophore that promotes bacterial growth in iron-deplete media and the murine lung. Yet, past studies failed to identify a role for the rhizoferrin biosynthetic gene () in L. pneumophila infection of host cells, suggesting the siderophore's importance was solely linked to extracellular survival. To test the possibility that rhizoferrin's relevance to intracellular infection was missed due to functional redundancy with the ferrous iron transport (FeoB) pathway, we characterized a new mutant lacking both and . This mutant was highly impaired for growth on bacteriological media that were only modestly depleted of iron, confirming that rhizoferrin-mediated ferric iron uptake and FeoB-mediated ferrous iron uptake are critical for iron acquisition. The mutant, but not its -containing complement, was also highly defective for biofilm formation on plastic surfaces, demonstrating a new role for the L. pneumophila siderophore in extracellular survival. Finally, the mutant, but not its complement containing , proved to be greatly impaired for growth in Acanthamoeba castellanii, , and human U937 cell macrophages, revealing that rhizoferrin does promote intracellular infection by L. pneumophila. Moreover, the application of purified rhizoferrin triggered cytokine production from the U937 cells. Rhizoferrin-associated genes were fully conserved across the many sequenced strains of L. pneumophila examined but were variably present among strains from the other species of . Outside of , the closest match to the L. pneumophila rhizoferrin genes was in Aquicella siphonis, another facultative intracellular parasite of amoebae.

Keywords

References

  1. Nat Genet. 2016 Feb;48(2):167-75 [PMID: 26752266]
  2. Microorganisms. 2022 Feb 23;10(3): [PMID: 35336074]
  3. Trends Parasitol. 2018 Dec;34(12):1027-1037 [PMID: 30322750]
  4. Microbes Environ. 2016 Dec 23;31(4):387-394 [PMID: 27629106]
  5. Front Cell Infect Microbiol. 2022 Apr 11;12:881392 [PMID: 35480233]
  6. Infect Immun. 2011 Jun;79(6):2168-81 [PMID: 21422183]
  7. PLoS Pathog. 2023 Jan 19;19(1):e1011064 [PMID: 36656902]
  8. Appl Environ Microbiol. 2006 Apr;72(4):2885-95 [PMID: 16597995]
  9. Sci Rep. 2022 Jun 23;12(1):10649 [PMID: 35739200]
  10. PLoS Pathog. 2008 Nov;4(11):e1000220 [PMID: 19043549]
  11. Environ Microbiol. 2007 May;9(5):1267-77 [PMID: 17472639]
  12. Microbiologyopen. 2016 Jun;5(3):453-68 [PMID: 26918301]
  13. J Bacteriol. 1993 May;175(9):2727-33 [PMID: 8478334]
  14. Microb Genom. 2019 Jun;5(6): [PMID: 31166887]
  15. Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2265-2273 [PMID: 30659146]
  16. Infect Immun. 2016 Nov 18;84(12):3313-3327 [PMID: 27600508]
  17. Biomolecules. 2022 Jan 27;12(2): [PMID: 35204726]
  18. Microbiol Mol Biol Rev. 2021 Feb 10;85(1): [PMID: 33568459]
  19. Methods Mol Biol. 2013;954:151-62 [PMID: 23150393]
  20. PLoS One. 2017 Mar 3;12(3):e0173116 [PMID: 28257493]
  21. PLoS Pathog. 2021 Jul 19;17(7):e1009781 [PMID: 34280250]
  22. J Bacteriol. 1996 Jan;178(2):496-504 [PMID: 8550472]
  23. Biometals. 2013 Dec;26(6):1003-12 [PMID: 24065571]
  24. Biometals. 2009 Aug;22(4):625-32 [PMID: 19350395]
  25. Trends Microbiol. 2021 Sep;29(9):772-775 [PMID: 33707049]
  26. Clin Diagn Lab Immunol. 2003 Sep;10(5):813-20 [PMID: 12965910]
  27. J Bacteriol. 2006 Jun;188(11):3785-95 [PMID: 16707671]
  28. Virulence. 2021 Dec;12(1):1122-1144 [PMID: 33843434]
  29. Microbiology (Reading). 2014 Dec;160(Pt 12):2732-2744 [PMID: 25253612]
  30. Trends Microbiol. 2021 Oct;29(10):863-866 [PMID: 33612398]
  31. Mol Microbiol. 1999 Aug;33(4):721-31 [PMID: 10447882]
  32. Microb Pathog. 2002 May;32(5):239-48 [PMID: 12071680]
  33. Infect Immun. 2011 May;79(5):1984-97 [PMID: 21383054]
  34. Infect Immun. 2022 Oct 20;90(10):e0036922 [PMID: 36073935]
  35. Biometals. 1999 Dec;12(4):315-21 [PMID: 10816731]
  36. Appl Environ Microbiol. 2008 Feb;74(3):753-61 [PMID: 18083880]
  37. Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):13468-13473 [PMID: 27821778]
  38. Gut Microbes. 2020 Nov 9;12(1):1-18 [PMID: 33171063]
  39. J Cell Sci. 2013 Jan 1;126(Pt 1):301-11 [PMID: 22992462]
  40. PLoS Pathog. 2022 Jun 17;18(6):e1010561 [PMID: 35714158]
  41. J Clin Invest. 1989 May;83(5):1457-65 [PMID: 2496141]
  42. PLoS Genet. 2017 Feb 17;13(2):e1006629 [PMID: 28212376]
  43. Int J Mol Sci. 2013 Oct 31;14(11):21660-75 [PMID: 24185913]
  44. Medchemcomm. 2019 Mar 21;10(4):505-512 [PMID: 31057729]
  45. mBio. 2018 Oct 9;9(5): [PMID: 30301851]
  46. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  47. Microbes Infect. 2010 Oct;12(11):819-27 [PMID: 20685341]
  48. Infect Immun. 2010 Jun;78(6):2477-87 [PMID: 20351139]
  49. Infect Immun. 2017 Mar 23;85(4): [PMID: 28138020]
  50. Lancet. 2016 Jan 23;387(10016):376-385 [PMID: 26231463]
  51. J Microbiol Methods. 2017 Oct;141:87-89 [PMID: 28802722]
  52. J Biol Chem. 2021 Jan-Jun;296:100146 [PMID: 33277357]
  53. Front Cell Infect Microbiol. 2017 Nov 30;7:477 [PMID: 29250488]
  54. Infect Immun. 2015 Jun;83(6):2487-95 [PMID: 25847958]
  55. Pathogens. 2020 Apr 15;9(4): [PMID: 32326561]
  56. Microbiology (Reading). 2011 Mar;157(Pt 3):868-878 [PMID: 21178169]
  57. Biometals. 2007 Jun;20(3-4):323-31 [PMID: 17180462]
  58. J Bacteriol. 2011 Nov;193(21):5971-84 [PMID: 21890700]
  59. Microbiology (Reading). 2008 Jan;154(Pt 1):30-41 [PMID: 18174123]
  60. Future Microbiol. 2009 Jun;4(5):615-29 [PMID: 19492970]
  61. Appl Environ Microbiol. 2003 Nov;69(11):6533-40 [PMID: 14602611]
  62. Infect Dis Ther. 2022 Jun;11(3):973-986 [PMID: 35505000]
  63. Mol Biol Evol. 2022 Mar 2;39(3): [PMID: 35167692]
  64. J Immunol. 2007 Nov 15;179(10):6981-7 [PMID: 17982089]
  65. mBio. 2021 Dec 21;12(6):e0289321 [PMID: 34809462]
  66. J Clin Invest. 1991 Oct;88(4):1103-12 [PMID: 1918366]
  67. mBio. 2018 Apr 17;9(2): [PMID: 29666285]
  68. Microb Pathog. 1988 Aug;5(2):87-95 [PMID: 3237054]
  69. Mol Cell. 2002 Nov;10(5):1033-43 [PMID: 12453412]
  70. Microb Cell. 2022 Dec 06;10(1):1-17 [PMID: 36636491]
  71. Curr Microbiol. 2004 Sep;49(3):203-7 [PMID: 15386105]
  72. Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2209149119 [PMID: 36413498]
  73. Microbiol Res. 2021 Sep;250:126790 [PMID: 34098495]
  74. PLoS One. 2014 Apr 02;9(4):e93558 [PMID: 24695402]
  75. J Bacteriol. 2011 Apr;193(7):1563-75 [PMID: 21278293]
  76. Infect Immun. 2015 Oct;83(10):3937-45 [PMID: 26195554]
  77. Appl Environ Microbiol. 1997 May;63(5):2047-53 [PMID: 9143134]
  78. Diagn Microbiol Infect Dis. 2010 Mar;66(3):253-60 [PMID: 20159373]
  79. Infect Immun. 2014 Sep;82(9):3826-36 [PMID: 24980968]
  80. J Mol Biol. 2019 Oct 4;431(21):4321-4344 [PMID: 31351897]
  81. Mol Microbiol. 2022 Feb;117(2):307-319 [PMID: 34816517]
  82. Elife. 2017 Nov 21;6: [PMID: 29160206]
  83. J Bacteriol. 2006 Feb;188(4):1351-63 [PMID: 16452417]
  84. Infect Immun. 2013 May;81(5):1399-410 [PMID: 23429532]
  85. J Med Microbiol. 2007 Mar;56(Pt 3):305-312 [PMID: 17314358]
  86. mBio. 2012 Nov 20;3(6): [PMID: 23169997]
  87. Clin Microbiol Rev. 2015 Jan;28(1):95-133 [PMID: 25567224]
  88. J Immunol. 1998 Jan 1;160(1):316-21 [PMID: 9551986]
  89. Adv Appl Microbiol. 2012;79:43-71 [PMID: 22569517]
  90. Environ Microbiol. 2007 May;9(5):1341-4 [PMID: 17472646]
  91. J Vis Exp. 2011 Jan 30;(47): [PMID: 21307833]
  92. Microorganisms. 2021 Jun 03;9(6): [PMID: 34205095]
  93. Pathogens. 2015 Jun 19;4(2):390-405 [PMID: 26102291]
  94. FEMS Microbiol Ecol. 2018 Dec 1;94(12): [PMID: 30973601]
  95. Biochem Pharmacol. 1994 May 18;47(10):1843-50 [PMID: 8204101]
  96. Water Res. 2022 Nov 1;226:119238 [PMID: 36270142]
  97. mBio. 2016 Sep 13;7(5): [PMID: 27624128]
  98. Front Cell Infect Microbiol. 2021 Mar 08;11:642216 [PMID: 33763389]
  99. Biomolecules. 2021 Jan 15;11(1): [PMID: 33467718]
  100. Microorganisms. 2022 Feb 15;10(2): [PMID: 35208896]
  101. PLoS Pathog. 2009 Jul;5(7):e1000501 [PMID: 19578436]
  102. Pathogens. 2020 Nov 17;9(11): [PMID: 33212943]
  103. Biometals. 2009 Aug;22(4):583-93 [PMID: 19350396]
  104. Int J Biochem Cell Biol. 2017 Aug;89:136-146 [PMID: 28610916]
  105. Biochim Biophys Acta. 2015 Aug;1854(8):1054-70 [PMID: 25970810]
  106. Clin Microbiol Rev. 2010 Apr;23(2):274-98 [PMID: 20375353]
  107. mBio. 2013 Mar 12;4(2):e00074-13 [PMID: 23481601]
  108. Curr Microbiol. 2018 Jun;75(6):736-744 [PMID: 29468303]
  109. Infect Immun. 2007 Jun;75(6):3160-8 [PMID: 17420239]
  110. Indian J Exp Biol. 2005 Oct;43(10):880-6 [PMID: 16235721]
  111. Appl Environ Microbiol. 2011 Apr;77(7):2545-8 [PMID: 21296953]
  112. Case Rep Infect Dis. 2022 Nov 24;2022:6289211 [PMID: 36465568]
  113. Appl Environ Microbiol. 2008 Aug;74(15):4817-24 [PMID: 18515476]
  114. Genome Biol. 2014;15(11):505 [PMID: 25370836]
  115. Cell Microbiol. 2020 May;22(5):e13163 [PMID: 31945239]
  116. Microbiology (Reading). 2012 Mar;158(Pt 3):721-735 [PMID: 22160401]
  117. Environ Sci Technol. 2015 Apr 21;49(8):4797-815 [PMID: 25774976]
  118. Int J Med Microbiol. 2018 Jan;308(1):49-57 [PMID: 28865995]
  119. Nat Rev Microbiol. 2022 Oct;20(10):608-620 [PMID: 35922483]
  120. Infect Immun. 2014 Mar;82(3):1222-33 [PMID: 24379287]
  121. Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):17775-17785 [PMID: 31431530]
  122. Inorg Chem. 1996 Oct 23;35(22):6429-6436 [PMID: 11666790]
  123. Infect Immun. 2013 Sep;81(9):3309-16 [PMID: 23798537]
  124. J Bacteriol. 2000 Feb;182(3):749-57 [PMID: 10633110]
  125. Infect Immun. 2013 Nov;81(11):4182-91 [PMID: 23980114]
  126. Emerg Infect Dis. 2022 Mar;28(3):527-538 [PMID: 35195513]
  127. Int J Syst Evol Microbiol. 2012 Dec;62(Pt 12):2946-2954 [PMID: 22286905]
  128. J Immunol. 2006 May 15;176(10):6162-71 [PMID: 16670325]
  129. Infect Immun. 2009 Jul;77(7):2887-95 [PMID: 19398549]
  130. J Immunol. 2004 Jun 1;172(11):7069-77 [PMID: 15153529]
  131. Future Microbiol. 2015;10(5):841-51 [PMID: 26000653]
  132. Infect Immun. 1995 Sep;63(9):3253-8 [PMID: 7642253]
  133. mBio. 2021 Oct 26;12(5):e0203421 [PMID: 34607467]
  134. Infect Immun. 1987 Feb;55(2):433-7 [PMID: 2433220]
  135. Clin Diagn Lab Immunol. 1998 May;5(3):401-3 [PMID: 9605998]
  136. Dalton Trans. 2015 Apr 14;44(14):6320-39 [PMID: 25764171]
  137. Environ Microbiol. 2015 Apr;17(4):1338-50 [PMID: 25141909]
  138. Nature. 2004 Dec 16;432(7019):917-21 [PMID: 15531878]
  139. J Microbiol. 2018 Jul;56(7):449-457 [PMID: 29948830]
  140. Gene. 1994 May 27;143(1):117-21 [PMID: 8200525]
  141. Infect Immun. 2002 Oct;70(10):5659-69 [PMID: 12228295]
  142. Biochemistry. 2016 Mar 15;55(10):1503-15 [PMID: 26886069]
  143. Infect Immun. 2007 Aug;75(8):4062-70 [PMID: 17548481]
  144. Annu Rev Pathol. 2020 Jan 24;15:439-466 [PMID: 31657966]
  145. J Bacteriol. 2010 Nov;192(22):6001-16 [PMID: 20833813]
  146. Front Cell Infect Microbiol. 2018 Feb 27;8:38 [PMID: 29535972]
  147. Infect Immun. 2011 May;79(5):1936-50 [PMID: 21321072]
  148. Front Microbiol. 2019 Apr 05;10:604 [PMID: 31024468]
  149. Environ Sci Technol. 2006 Dec 1;40(23):7434-9 [PMID: 17181000]
  150. Nat Rev Microbiol. 2020 Mar;18(3):152-163 [PMID: 31748738]
  151. Emerg Infect Dis. 2021 Nov;27(11):2864-2868 [PMID: 34469708]
  152. mSphere. 2019 Nov 13;4(6): [PMID: 31722994]
  153. Virulence. 2022 Dec;13(1):160-173 [PMID: 35030980]
  154. Microbiology (Reading). 2022 Mar;168(3): [PMID: 35293855]
  155. FEMS Microbiol Lett. 1992 Jul 1;73(1-2):37-41 [PMID: 1387861]
  156. Infect Immun. 2019 Oct 18;87(11): [PMID: 31405960]
  157. Emerg Infect Dis. 2021 Jan;27(1):255-257 [PMID: 33350911]
  158. Environ Microbiol. 2022 Aug;24(8):3672-3692 [PMID: 35415862]
  159. Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5208-17 [PMID: 26330609]
  160. Biochemistry. 2019 Oct 29;58(43):4337-4342 [PMID: 31589416]
  161. Nat Chem Biol. 2005 Aug;1(3):149-53 [PMID: 16408019]
  162. Infect Immun. 2003 Apr;71(4):1919-28 [PMID: 12654809]
  163. PLoS One. 2012;7(11):e50560 [PMID: 23185637]
  164. Infect Immun. 2016 Jul 21;84(8):2185-2197 [PMID: 27185787]
  165. Infect Immun. 1996 Mar;64(3):842-8 [PMID: 8641790]

Grants

  1. S10 OD020118/NIH HHS
  2. T32 AI007476/NIAID NIH HHS
  3. R01 AI139054/NIAID NIH HHS
  4. R25 GM079300/NIGMS NIH HHS
  5. T32 GM008061/NIGMS NIH HHS

MeSH Term

Animals
Mice
Humans
Legionella pneumophila
Siderophores
Amoeba
U937 Cells
Bacterial Proteins
Iron
Macrophages
Biofilms

Chemicals

rhizoferrin
Siderophores
Bacterial Proteins
Iron

Word Cloud

Created with Highcharts 10.0.0pneumophilarhizoferrinLironmutantLegionellasiderophoregrowthinfectionintracellularmediarolecellsextracellularsurvivalferrousFeoBnewhighlyimpaireduptakecomplementbiofilmAcanthamoebaU937macrophagesgenesstrainsPreviouslyshowedsecretespolycarboxylatepromotesbacterialiron-depletemurinelungYetpaststudiesfailedidentifybiosyntheticgenehostsuggestingsiderophore'simportancesolelylinkedtestpossibilityrhizoferrin'srelevancemissedduefunctionalredundancytransportpathwaycharacterizedlackingbacteriologicalmodestlydepletedconfirmingrhizoferrin-mediatedferricFeoB-mediatedcriticalacquisition-containingalsodefectiveformationplasticsurfacesdemonstratingFinallycontainingprovedgreatlycastellaniihumancellrevealingpromoteMoreoverapplicationpurifiedtriggeredcytokineproductionRhizoferrin-associatedfullyconservedacrossmanysequencedexaminedvariablypresentamongspeciesOutsideclosestmatchAquicellasiphonisanotherfacultativeparasiteamoebaeRhizoferrinPromotesBacterialBiofilmFormationGrowthwithinAmoebaeMacrophagesLegionnaires'diseaseVermamoebacytokines

Similar Articles

Cited By