An AI Approach to Generating MIDD Assets Across the Drug Development Continuum.

Jeffrey S Barrett, Rahul K Goyal, Jogarao Gobburu, Szczepan Baran, Jyotika Varshney
Author Information
  1. Jeffrey S Barrett: Aridhia Bioinformatics, 163 Bath Street, Glasgow, Scotland, G2 4SQ, UK. Jeff.barrett@aridhia.com. ORCID
  2. Rahul K Goyal: Center for Translational Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA.
  3. Jogarao Gobburu: Center for Translational Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA.
  4. Szczepan Baran: VeriSim Life, San Francisco, California, USA.
  5. Jyotika Varshney: VeriSim Life, San Francisco, California, USA.

Abstract

Model-informed drug development involves developing and applying exposure-based, biological, and statistical models derived from preclinical and clinical data sources to inform drug development and decision-making. Discrete models are generated from individual experiments resulting in a single model expression that is utilized to inform a single stage-gate decision. Other model types provide a more holistic view of disease biology and potentially disease progression depending on the appropriateness of the underlying data sources for that purpose. Despite this awareness, most data integration and model development approaches are still reliant on internal (within company) data stores and traditional structural model types. An AI/ML-based MIDD approach relies on more diverse data and is informed by past successes and failures including data outside a host company (external data sources) that may enhance predictive value and enhance data generated by the sponsor to reflect more informed and timely experimentation. The AI/ML methodology also provides a complementary approach to more traditional modeling efforts that support MIDD and thus yields greater fidelity in decision-making. Early pilot studies support this assessment but will require broader adoption and regulatory support for more evidence and refinement of this paradigm. An AI/ML-based approach to MIDD has the potential to transform regulatory science and the current drug development paradigm, optimize information value, and increase candidate and eventually product confidence with respect to safety and efficacy. We highlight early experiences with this approach using the AI compute platforms as representative examples of how MIDD can be facilitated with an AI/ML approach.

Keywords

References

  1. Leinfuss E. Changing the drug development playbook – model-informed drug development has arrived. PharmaVOICE, Nov-Dec 2016, https://www.certara.com/app/uploads/Resources/Articles/AR_ChangingDrugDevPlaybook.pdf . Accessed 17 Jan 2022.
  2. Lesko LJ. Perspective on model-informed drug development. CPT Pharmacometrics Syst Pharmacol. 2021;10(10):1127–9. https://doi.org/10.1002/psp4.12699 . Epub 2021 Aug 17. PMID: 34404115; PMCID: PMC8520742 [DOI: 10.1002/psp4.12699]
  3. Morrissey KM, Marchand M, Patel H, et al. Alternative dosing regimens for atezolizumab: an example of model-informed drug development in the postmarketing setting. Cancer Chemother Pharmacol. 2019;84:1257–67. https://doi.org/10.1007/s00280-019-03954-8 . [DOI: 10.1007/s00280-019-03954-8]
  4. Marshall S, Madabushi R, Manolis E, Krudys K, Staab A, Dykstra K, Visser SAG. Model-informed drug discovery and development: current industry good practice and regulatory expectations and future perspectives. CPT Pharmacometrics Syst Pharmacol. 2019;8(2):87–96. https://doi.org/10.1002/psp4.12372 . Epub 2019 Feb 1. PMID: 30411538; PMCID: PMC6389350 [DOI: 10.1002/psp4.12372]
  5. Combes FP, Einolf HJ, Coello N, Heimbach T, He H, Grosch K. Model-informed drug development for everolimus dosing selection in pediatric infant patients. CPT Pharmacometrics Syst Pharmacol. 2020;9(4):230–7. https://doi.org/10.1002/psp4.12502 . Epub 2020 Apr 5. PMID: 32150661; PMCID: PMC7180003 [DOI: 10.1002/psp4.12502]
  6. Wang Y, Zhu H, Madabushi R, Liu Q, Huang S-M, Zineh I. Model-informed drug development: current US regulatory practice and future considerations. Clin Pharmacol Ther. 2019;105:899–911. [DOI: 10.1002/cpt.1363]
  7. Madabushi R, Benjamin JM, Grewal R, Pacanowski MA, Strauss DG, Wang Y, Zhu H, Zineh I. The US Food and Drug Administration’s model-informed drug development paired meeting pilot program: early experience and impact. Clin Pharm Ther. 2019;106(1):74–8. https://doi.org/10.1002/cpt.1457 . [DOI: 10.1002/cpt.1457]
  8. EFPIA MID3 Workgroup, Marshall SF, Burghaus R, Cosson V, Cheung SY, Chenel M, Della Pasqua O, Frey N, Hamrén B, Harnisch L, Ivanow F, Kerbusch T, Lippert J, Milligan PA, Rohou S, Staab A, Steimer JL, Tornøe C, Visser SA. Good practices in model-informed drug discovery and development: practice, application, and documentation. CPT Pharmacometrics Syst Pharmacol. 2016;5(3):93–122. [DOI: 10.1002/psp4.12049]
  9. Manolis E, Brogren J, Cole S, Hay JL, Nordmark A, Karlsson KE, Lentz F, Benda N, Wangorsch G, Pons G, Zhao W, Gigante V, Serone F, Standing JF, Dokoumetzidis A, Vakkilainen J, van den Heuvel M, Mangas Sanjuan V, Taminiau J, et al. EMA Modelling and simulation working group. CPT Pharmacometrics Syst Pharmacol. 2017;6(7):416–7. https://doi.org/10.1002/psp4.12223 . PMID: 28653481 [DOI: 10.1002/psp4.12223]
  10. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33. https://doi.org/10.1016/j.jhealeco.2016.01.012 . [DOI: 10.1016/j.jhealeco.2016.01.012]
  11. Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80–93. https://doi.org/10.1016/j.drudis.2020.10.010 . Epub 2020 Oct 21. PMID: 33099022; PMCID: PMC7577280 [DOI: 10.1016/j.drudis.2020.10.010]
  12. Maharao N, Antontsev V, Wright M, Varshney J. Entering the era of computationally driven drug development. Drug Metab Rev. 2020;52(2):283–98. https://doi.org/10.1080/03602532.2020.1726944 . Epub 2020 Feb 21 [DOI: 10.1080/03602532.2020.1726944]
  13. Chen EP, Bondi RW, Michalski PJ. Model-based target pharmacology assessment (mTPA): an approach using PBPK/PD modeling and machine learning to design medicinal chemistry and DMPK strategies in early drug discovery. J Med Chem. 2021;64(6):3185–96. https://doi.org/10.1021/acs.jmedchem.0c02033 . [DOI: 10.1021/acs.jmedchem.0c02033]
  14. Antontsev V, Jagarapu A, Bundey Y, Hou H, Khotimchenko M, Walsh J, Varshney J. A hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform. Sci Rep. 2021;11:11143. https://doi.org/10.1038/s41598-021-90637-1 . [DOI: 10.1038/s41598-021-90637-1]
  15. Walden DM, Khotimchenko M, Hou H, Chakravarty K, Varshney J. Effects of magnesium, calcium, and aluminum chelation on fluoroquinolone absorption rate and bioavailability: a computational study. Pharmaceutics. 2021;13(5):594. Published 2021 Apr 21. https://doi.org/10.3390/pharmaceutics13050594 . [DOI: 10.3390/pharmaceutics13050594]
  16. Chakravarty K, Antontsev VG, Khotimchenko M, Gupta N, Jagarapu A, Bundey Y, Hou H, Maharao N, Varshney J. Accelerated repurposing and drug development of pulmonary hypertension therapies for COVID-19 treatment using an AI-integrated biosimulation platform. Molecules. 2021;26(7):1912. https://doi.org/10.3390/molecules26071912 . PMID: 33805419; PMCID: PMC8037385 [DOI: 10.3390/molecules26071912]
  17. Walden DM, Bundey Y, Jagarapu A, Antontsev V, Chakravarty K, Varshney J. Molecular simulation and statistical learning methods toward predicting drug-polymer amorphous solid dispersion miscibility, stability, and formulation design. Molecules. 2021;26(1):182. https://doi.org/10.3390/molecules26010182 . PMID: 33401494; PMCID: PMC7794704 [DOI: 10.3390/molecules26010182]
  18. Maharao N, Antontsev V, Hou H, Walsh J, Varshney J. Scalable in silico simulation of transdermal drug permeability: application of BIOiSIM platform. Drug Des Devel Ther. 2020;11(14):2307–17. https://doi.org/10.2147/DDDT.S253064 . PMID: 32606600; PMCID: PMC7296558 [DOI: 10.2147/DDDT.S253064]
  19. Khotimchenko M, Antontsev V, Chakravarty K, Hou H, Varshney J. In silico simulation of the systemic drug exposure following the topical application of opioid analgesics in patients with cutaneous lesions. Pharmaceutics. 2021;13(2):284. https://doi.org/10.3390/pharmaceutics13020284 . PMID: 33669957; PMCID: PMC7924840 [DOI: 10.3390/pharmaceutics13020284]
  20. Gallo JM. Pharmacokinetic/ pharmacodynamic-driven drug development. Mt Sinai J Med. 2010;77(4):381–8. https://doi.org/10.1002/msj.20193 . 
  21. Chen W, Liu X, Zhang S, Chen S. Artificial intelligence for drug discovery: Resources, methods, and applications. Mol Ther Nucleic Acids. 2023;31:691–702.  https://doi.org/10.1016/j.omtn.2023.02.019 . PMID: 36923950; PMCID: PMC10009646.
  22. Sun R, Limkin EJ, Vakalopoulou M, et al. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018;19(9):1180–91. https://doi.org/10.1016/S1470-2045(18)30413-3 . [DOI: 10.1016/S1470-2045(18)30413-3]
  23. Parekh V, Jacobs MA. Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev. 2016;1(2):207–26. https://doi.org/10.1080/23808993.2016.1164013 . [DOI: 10.1080/23808993.2016.1164013]
  24. Massard C, Michiels S, Ferté C, et al. High-throughput genomics and clinical outcome in hard-to-treat advanced cancers: results of the MOSCATO 01 trial. Cancer Discov. 2017;7(6):586–95. https://doi.org/10.1158/2159-8290.CD-16-1396 . [DOI: 10.1158/2159-8290.CD-16-1396]
  25. Yuan C, Ryan PB, Ta C, et al. Criteria2Query: a natural language interface to clinical databases for cohort definition. J Am Med Inform Assoc JAMIA. 2019;26(4):294–305. https://doi.org/10.1093/jamia/ocy178 . [DOI: 10.1093/jamia/ocy178]
  26. Goyal RK, Kalaria SN, McElroy SL, Gopalakrishnan M. An exploratory machine learning approach to identify placebo responders in pharmacological binge eating disorder trials. Clin Transl Sci. Published online September 24, 2022:cts.13406. https://doi.org/10.1111/cts.13406
  27. Mohan A, Sun Z, Ghosh S, et al. A machine-learning derived Huntington’s disease progression model: insights for clinical trial design. Mov Disord. 2022;37(3):553–62. https://doi.org/10.1002/mds.28866 . [DOI: 10.1002/mds.28866]
  28. Barrett JS, Nicholas T, Azer K, Corrigan BW. Role of disease progression models in drug development. Pharm Res. 2022;39(8):1803–15. https://doi.org/10.1007/s11095-022-03257-3 . [DOI: 10.1007/s11095-022-03257-3]
  29. Le-Rademacher JG, Peterson RA, Therneau TM, Sanford BL, Stone RM, Mandrekar SJ. Application of multi-state models in cancer clinical trials. Clin Trials. 2018;15(5):489–98. https://doi.org/10.1177/1740774518789098 . [DOI: 10.1177/1740774518789098]
  30. Zhao X, Shen J, Ivaturi V, et al. Model-based evaluation of the efficacy and safety of nivolumab once every 4 weeks across multiple tumor types. Ann Oncol. 2020;31(2):302–9. https://doi.org/10.1016/j.annonc.2019.10.015 . [DOI: 10.1016/j.annonc.2019.10.015]
  31. Moehler M, Dvorkin M, Boku N, et al. Phase III trial of avelumab maintenance after first-line induction chemotherapy versus continuation of chemotherapy in patients with gastric cancers: results from JAVELIN Gastric 100. J Clin Oncol. 2021;39:966–77. [DOI: 10.1200/JCO.20.00892]
  32. Terranova N, French J, Dai H, et al. Pharmacometric modeling and machine learning analyses of prognostic and predictive factors in the JAVELIN Gastric 100 phase III trial of avelumab. CPT Pharmacomet Syst Pharmacol. 2022;11(3):333–47. https://doi.org/10.1002/psp4.12754 . [DOI: 10.1002/psp4.12754]
  33. Liu Q, Zhu H, Liu C, Jean D, Shiew-Mei Huang M, ElZarrad K, Blumenthal G, Wang Y. Application of machine learning in drug development and regulation: current status and future potential. Clin Pharm Ther. 2020;107(4):726–9. https://doi.org/10.1002/cpt.1771 . [DOI: 10.1002/cpt.1771]
  34. Liu Q, Huang R, Hsieh J, Zhu H, Tiwari M, Liu G, Jean D, ElZarrad MK, Fakhouri T, Berman S, Dunn B, Diamond MC, Huang SM. Landscape analysis of the application of artificial intelligence and machine learning in regulatory submissions for drug development from 2016 to 2021. Clin Pharmacol Ther. 2022. https://doi.org/10.1002/cpt.2668 . Epub ahead of print.
  35. Rhodes C (2019). Perfect Harmony: Pharma’s MELLODDY Consortium Joins Forces with NVIDIA to Supercharge AI Drug Discovery, https://resources.nvidia.com/en-us-federated-learning/ai-drug-discovery-co .
  36. Whelan S. (2023). Accelerating efficient drug discovery with the power of AI, https://www.technologynetworks.com/drug-discovery/blog/accelerating-efficient-drug-discovery-with-the-power-of-ai-370479 . Accessed 17 Jan 2022
  37. US Food and Drug Administration. Use of artificial intelligence within drug development programs https://www.fda.gov/media/ 13261 2/download (2019). Accessed 17 Jan 2022.
  38. US Food and Drug Administration. Good machine learning practice for medical device development: guiding principles https://www.fda.gov/medical-devices/software-medical-device-samd/good-machine-learning-practice-medical-device-development-guiding-principles (2021). Accessed January 17, 2022.
  39. Chelliah V, van der Graaf PH. Model-informed target identification and validation through combining quantitative systems pharmacology with network-based analysis. CPT Pharmacometrics Syst Pharmacol. 2022. https://doi.org/10.1002/psp4.12766 . Epub ahead of print.

MeSH Term

Humans
Disease Progression
Drug Development
Models, Statistical
Research Design

Word Cloud

Created with Highcharts 10.0.0dataMIDDapproachdevelopmentmodeldrugsourcessupportmodelsclinicalinformdecision-makinggeneratedsingletypesdiseasecompanytraditionalAI/ML-basedinformedenhancevalueAI/MLregulatoryparadigmAIModel-informedinvolvesdevelopingapplyingexposure-basedbiologicalstatisticalderivedpreclinicalDiscreteindividualexperimentsresultingexpressionutilizedstage-gatedecisionprovideholisticviewbiologypotentiallyprogressiondependingappropriatenessunderlyingpurposeDespiteawarenessintegrationapproachesstillreliantinternalwithinstoresstructuralreliesdiversepastsuccessesfailuresincludingoutsidehostexternalmaypredictivesponsorreflecttimelyexperimentationmethodologyalsoprovidescomplementarymodelingeffortsthusyieldsgreaterfidelityEarlypilotstudiesassessmentwillrequirebroaderadoptionevidencerefinementpotentialtransformsciencecurrentoptimizeinformationincreasecandidateeventuallyproductconfidencerespectsafetyefficacyhighlightearlyexperiencesusingcomputeplatformsrepresentativeexamplescanfacilitatedApproachGeneratingAssetsAcrossDrugDevelopmentContinuumartificialintelligencepharmacology

Similar Articles

Cited By