Systematic profiling of subtelomeric silencing factors in budding yeast.

Alejandro Juárez-Reyes, J Abraham Avelar-Rivas, Jhonatan A Hernandez-Valdes, Bo Hua, Sergio E Campos, James González, Alicia González, Michael Springer, Eugenio Mancera, Alexander DeLuna
Author Information
  1. Alejandro Juárez-Reyes: Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico. ORCID
  2. J Abraham Avelar-Rivas: Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico. ORCID
  3. Jhonatan A Hernandez-Valdes: Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico.
  4. Bo Hua: Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
  5. Sergio E Campos: Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico.
  6. James González: Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
  7. Alicia González: Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
  8. Michael Springer: Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
  9. Eugenio Mancera: Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico. ORCID
  10. Alexander DeLuna: Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, 36824 Irapuato, Guanajuato, Mexico. ORCID

Abstract

Subtelomeric gene silencing is the negative transcriptional regulation of genes located close to telomeres. This phenomenon occurs in a variety of eukaryotes with salient physiological implications, such as cell adherence, virulence, immune-system escape, and ageing. The process has been widely studied in the budding yeast Saccharomyces cerevisiae, where genes involved in this process have been identified mostly on a gene-by-gene basis. Here, we introduce a quantitative approach to study gene silencing, that couples the classical URA3 reporter with GFP monitoring, amenable to high-throughput flow cytometry analysis. This dual silencing reporter was integrated into several subtelomeric loci in the genome, where it showed a gradual range of silencing effects. By crossing strains with this dual reporter at the COS12 and YFR057W subtelomeric query loci with gene-deletion mutants, we carried out a large-scale forward screen for potential silencing factors. The approach was replicable and allowed accurate detection of expression changes. Results of our comprehensive screen suggest that the main players influencing subtelomeric silencing were previously known, but additional potential factors underlying chromatin conformation are involved. We validate and report the novel silencing factor LGE1, a protein with unknown molecular function required for histone H2B ubiquitination. Our strategy can be readily combined with other reporters and gene perturbation collections, making it a versatile tool to study gene silencing at a genome-wide scale.

Keywords

References

  1. Cell. 2004 Feb 6;116(3):405-15 [PMID: 15016375]
  2. Mol Cell. 2001 Jul;8(1):189-99 [PMID: 11511372]
  3. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  4. Cell. 1993 Nov 5;75(3):543-55 [PMID: 8221893]
  5. Nat Genet. 1996 Sep;14(1):42-9 [PMID: 8782818]
  6. Genes Dev. 1999 Oct 1;13(19):2570-80 [PMID: 10521401]
  7. Cell. 1991 Sep 20;66(6):1279-87 [PMID: 1913809]
  8. Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14124-9 [PMID: 25228766]
  9. Mol Cell Biol. 2002 Jun;22(12):4167-80 [PMID: 12024030]
  10. Genes Dev. 2003 Sep 15;17(18):2245-58 [PMID: 12952896]
  11. PLoS Genet. 2009 Oct;5(10):e1000684 [PMID: 19834596]
  12. Genes Dev. 1992 May;6(5):801-14 [PMID: 1577274]
  13. EMBO J. 1999 May 4;18(9):2538-50 [PMID: 10228167]
  14. Nature. 1996 Sep 5;383(6595):92-6 [PMID: 8779721]
  15. Elife. 2022 Jan 24;11: [PMID: 35073254]
  16. Nature. 2003 Oct 16;425(6959):686-91 [PMID: 14562095]
  17. Eukaryot Cell. 2011 Jan;10(1):118-29 [PMID: 21057056]
  18. Genetics. 2014 Aug;197(4):1123-36 [PMID: 24879463]
  19. Mol Cell. 2011 Apr 8;42(1):127-36 [PMID: 21474074]
  20. Nucleic Acids Res. 2004 Dec 15;32(22):6575-84 [PMID: 15602000]
  21. Oncogene. 2002 Jan 21;21(4):512-21 [PMID: 11850776]
  22. PLoS One. 2011;6(12):e28674 [PMID: 22174863]
  23. Genes Dev. 1993 Jul;7(7A):1146-59 [PMID: 8319907]
  24. Proc Natl Acad Sci U S A. 2004 Jun 8;101(23):8658-63 [PMID: 15161972]
  25. Genes Dev. 1993 Jul;7(7A):1133-45 [PMID: 8319906]
  26. Cell. 1990 Nov 16;63(4):751-62 [PMID: 2225075]
  27. Methods Mol Biol. 2006;313:171-92 [PMID: 16118434]
  28. Methods Mol Biol. 2012;833:63-87 [PMID: 22183588]
  29. FEMS Microbiol Rev. 2014 Mar;38(2):144-71 [PMID: 24754043]
  30. Mol Gen Genet. 1984;197(2):345-6 [PMID: 6394957]
  31. EMBO J. 1999 May 4;18(9):2522-37 [PMID: 10228166]
  32. J Biol Chem. 2003 Sep 12;278(37):34739-42 [PMID: 12876294]
  33. Genetics. 2007 Dec;177(4):2541-6 [PMID: 18073447]
  34. PLoS Genet. 2006 Mar;2(3):e35 [PMID: 16552446]
  35. Nature. 2002 Jul 25;418(6896):387-91 [PMID: 12140549]
  36. Genes Dev. 2002 Jun 15;16(12):1518-27 [PMID: 12080090]
  37. Genetics. 1997 Apr;145(4):923-34 [PMID: 9093847]
  38. Aging Cell. 2018 Jun;17(3):e12749 [PMID: 29575540]
  39. Nucleic Acids Res. 2009 Jan;37(1):1-13 [PMID: 19033363]
  40. Genetics. 2008 Dec;180(4):2251-66 [PMID: 18845848]
  41. Mol Microbiol. 2005 Feb;55(4):1246-58 [PMID: 15686568]
  42. Nature. 1999 Nov 25;402(6760):418-21 [PMID: 10586882]
  43. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  44. FEBS Lett. 2018 May;592(9):1565-1574 [PMID: 29637554]
  45. Genes Dev. 1997 Mar 15;11(6):748-60 [PMID: 9087429]
  46. Mol Gen Genet. 2000 Mar;263(2):287-91 [PMID: 10778747]
  47. Cell. 2005 Apr 8;121(1):13-24 [PMID: 15820675]
  48. Appl Microbiol Biotechnol. 2010 Sep;88(1):31-9 [PMID: 20676629]
  49. Genetics. 1996 May;143(1):81-93 [PMID: 8722764]
  50. Mol Cell Biol. 2000 Nov;20(21):7991-8000 [PMID: 11027269]
  51. Biochem Cell Biol. 2023 Feb 1;101(1):125-130 [PMID: 36661263]
  52. Cell. 1995 Jul 14;82(1):89-100 [PMID: 7606788]

Grants

  1. /Wellcome Trust

MeSH Term

Saccharomyces cerevisiae Proteins
Silent Information Regulator Proteins, Saccharomyces cerevisiae
Saccharomycetales
Saccharomyces cerevisiae
Telomere
Heterochromatin
Gene Expression Regulation, Fungal

Chemicals

Saccharomyces cerevisiae Proteins
Silent Information Regulator Proteins, Saccharomyces cerevisiae
Heterochromatin

Word Cloud

Created with Highcharts 10.0.0silencingsubtelomericgenereporterfactorstranscriptionalregulationgenesprocessbuddingyeastSaccharomycescerevisiaeinvolvedapproachstudyduallociscreenpotentialgenome-wideSubtelomericnegativelocatedclosetelomeresphenomenonoccursvarietyeukaryotessalientphysiologicalimplicationscelladherencevirulenceimmune-systemescapeageingwidelystudiedidentifiedmostlygene-by-genebasisintroducequantitativecouplesclassicalURA3GFPmonitoringamenablehigh-throughputflowcytometryanalysisintegratedseveralgenomeshowedgradualrangeeffectscrossingstrainsCOS12YFR057Wquerygene-deletionmutantscarriedlarge-scaleforwardreplicableallowedaccuratedetectionexpressionchangesResultscomprehensivesuggestmainplayersinfluencingpreviouslyknownadditionalunderlyingchromatinconformationvalidatereportnovelfactorLGE1proteinunknownmolecularfunctionrequiredhistoneH2BubiquitinationstrategycanreadilycombinedreportersperturbationcollectionsmakingversatiletoolscaleSystematicprofilingepigeneticscreeningtelomerepositioneffect

Similar Articles

Cited By