Dermokine mutations contribute to epithelial-mesenchymal transition and advanced melanoma through ERK/MAPK pathways.

Wenqiong Ma, Zexiu Wu, Mazaher Maghsoudloo, Iqra Ijaz, Marzieh Dehghan Shasaltaneh, Yuqin Zhang, Qiao Weng, Junjiang Fu, Saber Imani, Qing Lian Wen
Author Information
  1. Wenqiong Ma: Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
  2. Zexiu Wu: Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
  3. Mazaher Maghsoudloo: Faculty of Advanced Science and Technology, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
  4. Iqra Ijaz: Sichuan Provincial Center for Gynecological and Breast Diseases, Southwest Medical University, Luzhou, Sichuan, China.
  5. Marzieh Dehghan Shasaltaneh: Faculty of Science, Department of Biology, University of Zanjan, Zanjan, Iran.
  6. Yuqin Zhang: Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
  7. Qiao Weng: Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
  8. Junjiang Fu: Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
  9. Saber Imani: Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China. ORCID
  10. Qing Lian Wen: Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.

Abstract

To discover vulnerabilities associated with dermokine (DMKN) as a new trigger of the epithelial-mesenchymal transition (EMT) -driven melanoma, we undertook a genome-wide genetic screening using transgenic. Here, we showed that DMKN expression could be constitutively increased in human malignant melanoma (MM) and that this correlates with poor overall survival in melanoma patients, especially in BRAF-mutated MM samples. Furthermore, in vitro, knockdown of DMKN inhibited the cell proliferation, migration, invasion, and apoptosis of MM cancer cells by the activation of ERK/MAPK signaling pathways and regulator of STAT3 in downstream molecular. By interrogating the in vitro melanoma dataset and characterization of advanced melanoma samples, we found that DMKN downregulated the EMT-like transcriptional program by disrupting EMT cortical actin, increasing the expression of epithelial markers, and decreasing the expression of mesenchymal markers. In addition, whole exome sequencing was presented with p.E69D and p.V91A DMKN mutations as a novel somatic loss of function mutations in those patients. Moreover, our purposeful proof-of-principle modeled the interaction of ERK with p.E69D and p.V91A DMKN mutations in the ERK-MAPK kinas signaling that may be naturally associated with triggering the EMT during melanomagenesis. Altogether, these findings provide preclinical evidence for the role of DMKN in shaping the EMT-like melanoma phenotype and introduced DMKN as a new exceptional responder for personalized MM therapy.

References

  1. Science. 2012 Dec 21;338(6114):1622-6 [PMID: 23258894]
  2. Immunotherapy. 2022 Sep;14(13):1021-1026 [PMID: 35892257]
  3. Curr Protoc Bioinformatics. 2012 Jun;Chapter 1:1.12.1-1.12.43 [PMID: 22700311]
  4. J Invest Dermatol. 2015 Mar;135(3):659-662 [PMID: 25666674]
  5. Epigenomics. 2019 Nov;11(14):1561-1579 [PMID: 31584294]
  6. BMC Med Genet. 2019 Mar 29;20(1):54 [PMID: 30925905]
  7. Int J Mol Sci. 2022 May 11;23(10): [PMID: 35628196]
  8. Sci Rep. 2016 Jul 14;6:29822 [PMID: 27412325]
  9. Oncotarget. 2017 Nov 9;9(1):122-141 [PMID: 29416601]
  10. Genomics. 2004 Aug;84(2):384-97 [PMID: 15234001]
  11. J Clin Aesthet Dermatol. 2014 Jun;7(6):13-24 [PMID: 25013535]
  12. Nat Genet. 2007 Oct;39(10):1181-6 [PMID: 17898773]
  13. Melanoma Res. 2022 Aug 1;32(4):278-285 [PMID: 35726793]
  14. Cell Res. 2011 Feb;21(2):275-89 [PMID: 20714342]
  15. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  16. Cell. 2018 Apr 5;173(2):371-385.e18 [PMID: 29625053]
  17. Molecules. 2022 Jul 25;27(15): [PMID: 35897925]
  18. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  19. J Eur Acad Dermatol Venereol. 2013 Jul;27(7):867-75 [PMID: 22646803]
  20. Cancer Inform. 2015 Jan 27;13(Suppl 7):77-83 [PMID: 25657572]
  21. Genome Biol. 2017 Apr 8;18(1):66 [PMID: 28390427]
  22. Nucleic Acids Res. 2017 Jan 4;45(D1):D183-D189 [PMID: 27899595]
  23. Biochem Biophys Res Commun. 2002 Jan 11;290(1):225-9 [PMID: 11779157]
  24. Int J Mol Sci. 2017 Sep 21;18(10): [PMID: 28934120]
  25. Curr Protoc Bioinformatics. 2006 Jan;Chapter 1:Unit 1.13 [PMID: 18428754]
  26. J Gastroenterol. 2010 Dec;45(12):1201-11 [PMID: 20652332]
  27. J Invest Dermatol. 2020 Apr;140(4):838-849.e9 [PMID: 31669414]
  28. J Invest Dermatol. 2007 Jul;127(7):1622-31 [PMID: 17380110]
  29. Trends Immunol. 2003 Oct;24(10):528-33 [PMID: 14552836]
  30. Int J Cancer. 2020 Aug 1;147(3):692-701 [PMID: 31671209]
  31. J Drug Target. 2020 Nov;28(9):961-969 [PMID: 32374627]
  32. Bioinformatics. 2016 Apr 15;32(8):1130-7 [PMID: 26644415]
  33. Int J Mol Sci. 2022 Jul 01;23(13): [PMID: 35806358]
  34. Nat Genet. 2002 May;31(1):19-20 [PMID: 11984561]
  35. Curr Protein Pept Sci. 2008 Feb;9(1):1-15 [PMID: 18336319]
  36. Nat Methods. 2010 Aug;7(8):575-6 [PMID: 20676075]
  37. BMC Cell Biol. 2011 Mar 30;12:12 [PMID: 21450070]
  38. BMC Bioinformatics. 2010 Nov 08;11:548 [PMID: 21059217]
  39. Arq Bras Oftalmol. 2022 May 09;: [PMID: 35544941]
  40. J Mol Biol. 2016 Feb 22;428(4):720-725 [PMID: 26410586]
  41. Transl Oncol. 2021 Dec;14(12):101237 [PMID: 34626953]
  42. Drug Deliv. 2017 Nov;24(1):1410-1418 [PMID: 28933203]
  43. Cancer Cell. 2021 Jan 11;39(1):38-53.e7 [PMID: 33217343]
  44. Methods Enzymol. 2003;374:461-91 [PMID: 14696385]
  45. Int J Oncol. 2009 Jul;35(1):33-40 [PMID: 19513549]
  46. Biomedicines. 2022 Jan 11;10(1): [PMID: 35052829]
  47. Nat Rev Mol Cell Biol. 2011 Dec 22;13(1):39-51 [PMID: 22189424]
  48. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W510-4 [PMID: 19429685]
  49. Biomedicines. 2022 Mar 31;10(4): [PMID: 35453572]
  50. PLoS One. 2014 Sep 02;9(9):e106397 [PMID: 25181531]
  51. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  52. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10 [PMID: 17517781]
  53. Oncotarget. 2015 Aug 14;6(23):19580-91 [PMID: 26023736]
  54. Nucleic Acids Res. 2016 Jan 4;44(D1):D471-80 [PMID: 26527732]
  55. Genome Res. 2002 Jun;12(6):996-1006 [PMID: 12045153]
  56. Sci Rep. 2019 Nov 19;9(1):17050 [PMID: 31745173]
  57. Hum Mutat. 2000;15(1):57-61 [PMID: 10612823]
  58. Bioinformatics. 2009 May 1;25(9):1189-91 [PMID: 19151095]
  59. Biochim Biophys Acta. 2016 Apr;1863(4):770-84 [PMID: 26844774]
  60. J Cell Mol Med. 2016 Sep;20(9):1761-9 [PMID: 27027258]
  61. Sci Rep. 2021 Mar 15;11(1):6056 [PMID: 33723350]
  62. Vet Sci. 2022 Apr 06;9(4): [PMID: 35448673]
  63. Bioinformatics. 2017 Nov 01;33(21):3461-3467 [PMID: 29077811]
  64. Int J Cancer. 2013 Jan 15;132(2):385-400 [PMID: 22532371]
  65. Anticancer Res. 2012 Oct;32(10):4405-12 [PMID: 23060565]
  66. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  67. J Dermatol Sci. 2013 Apr;70(1):34-41 [PMID: 23428944]
  68. J Cell Mol Med. 2018 Mar;22(3):1733-1742 [PMID: 29193763]
  69. Oncotarget. 2017 Mar 28;8(13):21362-21379 [PMID: 28423483]
  70. Front Cell Dev Biol. 2016 Jun 08;4:53 [PMID: 27376062]
  71. Nucleic Acids Res. 2016 Jan 4;44(D1):D336-42 [PMID: 26578592]
  72. J Invest Dermatol. 2006 Feb;126(2):503-6 [PMID: 16374476]
  73. Cancer Manag Res. 2020 Jun 24;12:4937-4948 [PMID: 32606981]
  74. J Cell Sci. 2014 Jul 1;127(Pt 13):2862-72 [PMID: 24794495]
  75. FEBS Lett. 2012 Jul 30;586(16):2300-5 [PMID: 22735594]
  76. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W306-10 [PMID: 15980478]
  77. Nat Protoc. 2009;4(7):1073-81 [PMID: 19561590]
  78. Oncol Rep. 2020 Sep;44(3):1075-1093 [PMID: 32705227]
  79. J Nat Prod. 2022 Apr 22;85(4):1006-1017 [PMID: 35231173]
  80. Cancer Sci. 2017 Nov;108(11):2130-2141 [PMID: 28795470]

MeSH Term

Humans
Epithelial-Mesenchymal Transition
Melanoma
Mutation
Skin Neoplasms
Melanoma, Cutaneous Malignant

Chemicals

DMKN protein, human

Word Cloud

Created with Highcharts 10.0.0DMKNmelanomaMMpmutationsEMTexpressionassociatednewepithelial-mesenchymaltransitionpatientssamplesvitroERK/MAPKsignalingpathwaysadvancedEMT-likemarkersE69DV91Adiscovervulnerabilitiesdermokinetrigger-drivenundertookgenome-widegeneticscreeningusingtransgenicshowedconstitutivelyincreasedhumanmalignantcorrelatespooroverallsurvivalespeciallyBRAF-mutatedFurthermoreknockdowninhibitedcellproliferationmigrationinvasionapoptosiscancercellsactivationregulatorSTAT3downstreammolecularinterrogatingdatasetcharacterizationfounddownregulatedtranscriptionalprogramdisruptingcorticalactinincreasingepithelialdecreasingmesenchymaladditionwholeexomesequencingpresentednovelsomaticlossfunctionMoreoverpurposefulproof-of-principlemodeledinteractionERKERK-MAPKkinasmaynaturallytriggeringmelanomagenesisAltogetherfindingsprovidepreclinicalevidenceroleshapingphenotypeintroducedexceptionalresponderpersonalizedtherapyDermokinecontribute

Similar Articles

Cited By