Identifying determinants for the seropositive rate of schistosomiasis in Hunan province, China: A multi-scale geographically weighted regression model.

Yixin Tong, Ling Tang, Meng Xia, Guangping Li, Benjiao Hu, Junhui Huang, Jiamin Wang, Honglin Jiang, Jiangfan Yin, Ning Xu, Yue Chen, Qingwu Jiang, Jie Zhou, Yibiao Zhou
Author Information
  1. Yixin Tong: Fudan University School of Public Health, Shanghai, China. ORCID
  2. Ling Tang: Hunan Institute for Schistosomiasis Control, Yueyang, China.
  3. Meng Xia: Hunan Institute for Schistosomiasis Control, Yueyang, China.
  4. Guangping Li: Hunan Institute for Schistosomiasis Control, Yueyang, China.
  5. Benjiao Hu: Hunan Institute for Schistosomiasis Control, Yueyang, China.
  6. Junhui Huang: Fudan University School of Public Health, Shanghai, China.
  7. Jiamin Wang: Fudan University School of Public Health, Shanghai, China.
  8. Honglin Jiang: Fudan University School of Public Health, Shanghai, China.
  9. Jiangfan Yin: Fudan University School of Public Health, Shanghai, China.
  10. Ning Xu: Fudan University School of Public Health, Shanghai, China.
  11. Yue Chen: School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada.
  12. Qingwu Jiang: Fudan University School of Public Health, Shanghai, China.
  13. Jie Zhou: Hunan Institute for Schistosomiasis Control, Yueyang, China.
  14. Yibiao Zhou: Fudan University School of Public Health, Shanghai, China. ORCID

Abstract

BACKGROUND: Schistosomiasis is of great public health concern with a wide distribution and multiple determinants. Due to the advances in schistosomiasis elimination and the need for precision prevention and control, identifying determinants at a fine scale is urgent and necessary, especially for resource deployment in practice. Our study aimed to identify the determinants for the seropositive rate of schistosomiasis at the village level and to explore their spatial variations in local space.
METHODOLOGY: The seropositive rates of schistosomiasis were collected from 1714 villages or communities in Human Province, and six spatial regression models including ordinary least squares (OLS), spatial lag model (SLM), spatial error model (SEM), geographically weighted regression (GWR), robust GWR (RGWR) and multiscale GWR (MGWR) were used to fit the data.
PRINCIPAL/FINDINGS: MGWR was the best-fitting model (R2: 0.821, AICc:2727.092). Overall, the nearest distance from the river had the highest mean negative correlation, followed by proportion of households using well water and the annual average daytime surface temperature. The proportions of unmodified toilets showed the highest mean positive correlation, followed by the snail infested area, and the number of cattle. In spatial variability, the regression coefficients for the nearest distance from the river, annual average daytime surface temperature and the proportion of unmodified toilets were significant in all villages or communities and varied little in local space. The other significant determinants differed substantially in local space and had significance ratios ranging from 41% to 70%, including the number of cattle, the snail infested area and the proportion of households using well water.
CONCLUSIONS/SIGNIFICANCE: Our study shows that MGWR was well performed for the spatial variability of schistosomiasis in Hunan province. The spatial variability was different for different determinants. The findings for the determinants for the seropositive rate and mapped variability for some key determinants at the village level can be used for developing precision intervention measure for schistosomiasis control.

References

  1. Sci Total Environ. 2022 Feb 20;808:152126 [PMID: 34863745]
  2. Acta Trop. 2016 Jul;159:176-84 [PMID: 27012720]
  3. Acta Trop. 2021 Jan;213:105743 [PMID: 33159894]
  4. BMC Microbiol. 2020 Oct 2;20(1):298 [PMID: 33008301]
  5. Parasit Vectors. 2014 Mar 31;7:138 [PMID: 24684924]
  6. Appl Geogr. 2022 Apr;141:102671 [PMID: 35261415]
  7. Front Immunol. 2020 Oct 09;11:574136 [PMID: 33162989]
  8. Lancet. 2006 Sep 23;368(9541):1106-18 [PMID: 16997665]
  9. Trans R Soc Trop Med Hyg. 2022 Jun 1;116(6):555-563 [PMID: 34893918]
  10. PLoS Negl Trop Dis. 2017 Jul 12;11(7):e0005733 [PMID: 28700640]
  11. World Health Organ Tech Rep Ser. 2002;912:i-vi, 1-57, back cover [PMID: 12592987]
  12. Front Genet. 2012 Jan 24;2:112 [PMID: 22303406]
  13. Parasit Vectors. 2014 May 09;7:216 [PMID: 24886456]
  14. Lancet Infect Dis. 2015 Aug;15(8):927-40 [PMID: 26004859]
  15. Acta Trop. 2014 Apr;132:57-63 [PMID: 24361640]
  16. Parasit Vectors. 2014 Mar 06;7:95 [PMID: 24598061]
  17. Sci Total Environ. 2022 Dec 20;853:158628 [PMID: 36087662]
  18. Sci Total Environ. 2020 Aug 1;728:138884 [PMID: 32335404]
  19. Sustain Cities Soc. 2021 Feb;65:102627 [PMID: 33288993]
  20. Trop Geogr Med. 1994;46(4 Spec No):233-8 [PMID: 7825226]
  21. Parasite Epidemiol Control. 2022 May 30;18:e00256 [PMID: 35712128]
  22. PLoS Negl Trop Dis. 2022 May 20;16(5):e0010410 [PMID: 35594318]
  23. Trop Med Infect Dis. 2023 Feb 14;8(2): [PMID: 36828536]
  24. Lancet Infect Dis. 2022 Nov;22(11):e327-e335 [PMID: 35594896]
  25. Adv Parasitol. 2016;92:269-306 [PMID: 27137450]
  26. Trop Biomed. 2019 Jun 1;36(2):402-411 [PMID: 33597401]
  27. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2019 Nov 20;31(6):576-582 [PMID: 32064798]
  28. Infect Dis Poverty. 2021 Dec 13;10(1):134 [PMID: 34895355]
  29. Geospat Health. 2007 Nov;2(1):59-73 [PMID: 18686256]
  30. Am J Trop Med Hyg. 2022 Nov 14;107(6):1178-1184 [PMID: 36375461]
  31. Trends Parasitol. 2004 Jan;20(1):35-9 [PMID: 14700588]
  32. Sci Total Environ. 2021 Jun 1;771:144810 [PMID: 33545479]
  33. PLoS One. 2008;3(12):e4058 [PMID: 19115007]
  34. Environ Res. 2022 Nov;214(Pt 4):114151 [PMID: 36037923]
  35. PLoS Negl Trop Dis. 2008 Jun 11;2(6):e250 [PMID: 18545696]
  36. Scand J Infect Dis. 2009;41(4):285-90 [PMID: 19221932]
  37. Front Public Health. 2022 Nov 24;10:1032668 [PMID: 36504983]
  38. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2011 Dec;23(6):642-7 [PMID: 22379818]
  39. Environ Pollut. 2022 Jan 1;292(Pt A):118324 [PMID: 34637827]
  40. Parasitology. 2010 Jun;137(7):1099-107 [PMID: 20128946]
  41. Lancet. 2018 Nov 10;392(10159):1789-1858 [PMID: 30496104]
  42. Lancet. 2012 Dec 15;380(9859):2197-223 [PMID: 23245608]
  43. Curr Opin HIV AIDS. 2012 May;7(3):254-9 [PMID: 22327410]
  44. Acta Trop. 2005 Nov-Dec;96(2-3):69-96 [PMID: 16312039]
  45. J Am Stat Assoc. 1990 Sep;85(411):609-16 [PMID: 12155387]
  46. Diseases. 2022 Oct 19;10(4): [PMID: 36278592]
  47. PLoS Negl Trop Dis. 2021 Aug 5;15(8):e0009578 [PMID: 34351907]
  48. Sci Total Environ. 2023 Jan 10;855:158834 [PMID: 36122723]
  49. Int J Parasitol. 2014 Aug;44(9):659-68 [PMID: 24929133]
  50. Int J Parasitol. 2005 Feb;35(2):155-62 [PMID: 15710436]
  51. J Theor Biol. 2017 Nov 7;432:87-99 [PMID: 28823529]
  52. Lancet. 2018 Dec 8;392(10163):2431 [PMID: 30527408]
  53. Parasit Vectors. 2022 Nov 4;15(1):410 [PMID: 36333779]
  54. Parasit Vectors. 2016 Mar 09;9:135 [PMID: 26955957]
  55. Parasit Vectors. 2013 Aug 28;6(1):249 [PMID: 23985040]
  56. Parasit Vectors. 2020 Jul 2;13(1):337 [PMID: 32616074]
  57. Parasit Vectors. 2021 Apr 23;14(1):222 [PMID: 33892778]

MeSH Term

Animals
Cattle
Humans
Spatial Regression
Schistosomiasis
Temperature
China

Word Cloud

Created with Highcharts 10.0.0determinantsspatialschistosomiasisseropositiveregressionmodelvariabilityratelocalspaceGWRMGWRproportionwellprecisioncontrolstudyvillagelevelvillagescommunitiesincludinggeographicallyweightedusednearestdistanceriverhighestmeancorrelationfollowedhouseholdsusingwaterannualaveragedaytimesurfacetemperatureunmodifiedtoiletssnailinfestedareanumbercattlesignificantHunanprovincedifferentBACKGROUND:SchistosomiasisgreatpublichealthconcernwidedistributionmultipleDueadvanceseliminationneedpreventionidentifyingfinescaleurgentnecessaryespeciallyresourcedeploymentpracticeaimedidentifyexplorevariationsMETHODOLOGY:ratescollected1714HumanProvincesixmodelsordinaryleastsquaresOLSlagSLMerrorSEMrobustRGWRmultiscalefitdataPRINCIPAL/FINDINGS:best-fittingR2:0821AICc:2727092Overallnegativeproportionsshowedpositivecoefficientsvariedlittledifferedsubstantiallysignificanceratiosranging41%70%CONCLUSIONS/SIGNIFICANCE:showsperformedfindingsmappedkeycandevelopinginterventionmeasureIdentifyingChina:multi-scale

Similar Articles

Cited By