Glycogen availability and pH variation in a medium simulating vaginal fluid influence the growth of vaginal Lactobacillus species and Gardnerella vaginalis.

Stephany Navarro, Habib Abla, Betsaida Delgado, Jane A Colmer-Hamood, Gary Ventolini, Abdul N Hamood
Author Information
  1. Stephany Navarro: Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
  2. Habib Abla: School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
  3. Betsaida Delgado: Honors College, Texas Tech University, Lubbock, TX, USA.
  4. Jane A Colmer-Hamood: Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
  5. Gary Ventolini: Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center Permian Basin, Odessa, TX, USA.
  6. Abdul N Hamood: Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA. abdul.hamood@ttuhsc.edu.

Abstract

BACKGROUND: Glycogen metabolism by Lactobacillus spp. that dominate the healthy vaginal microbiome contributes to a low vaginal pH (3.5-4.5). During bacterial vaginosis (BV), strict and facultative anaerobes including Gardnerella vaginalis become predominant, leading to an increase in the vaginal pH (> 4.5). BV enhances the risk of obstetrical complications, acquisition of sexually transmitted infections, and cervical cancer. Factors critical for the maintenance of the healthy vaginal microbiome or the transition to the BV microbiome are not well defined. Vaginal pH may affect glycogen metabolism by the vaginal microflora, thus influencing the shift in the vaginal microbiome.
RESULTS: The medium simulating vaginal fluid (MSVF) supported growth of L. jensenii 62G, L. gasseri 63 AM, and L. crispatus JV-V01, and G. vaginalis JCP8151A at specific initial pH conditions for 30 d. L. jensenii at all three starting pH levels (pH 4.0, 4.5, and 5.0), G. vaginalis at pH 4.5 and 5.0, and L. gasseri at pH 5.0 exhibited the long-term stationary phase when grown in MSVF. L. gasseri at pH 4.5 and L. crispatus at pH 5.0 displayed an extended lag phase over 30 d suggesting inefficient glycogen metabolism. Glycogen was essential for the growth of L. jensenii, L. crispatus, and G. vaginalis; only L. gasseri was able to survive in MSVF without glycogen, and only at pH 5.0, where it used glucose. All four species were able to survive for 15 d in MSVF with half the glycogen content but only at specific starting pH levels - pH 4.5 and 5.0 for L. jensenii, L. gasseri, and G. vaginalis and pH 5.0 for L. crispatus.
CONCLUSIONS: These results suggest that variations in the vaginal pH critically influence the colonization of the vaginal tract by lactobacilli and G. vaginalis JCP8151A by affecting their ability to metabolize glycogen. Further, we found that L. jensenii 62G is capable of glycogen metabolism over a broader pH range (4.0-5.0) while L. crispatus JV-V01 glycogen utilization is pH sensitive (only functional at pH 5.0). Finally, our results showed that G. vaginalis JCP8151A can colonize the vaginal tract for an extended period as long as the pH remains at 4.5 or above.

Keywords

References

  1. Am J Reprod Immunol. 2014 Jun;71(6):618-23 [PMID: 24661416]
  2. Contraception. 1999 Feb;59(2):91-5 [PMID: 10361623]
  3. Front Microbiol. 2012 Sep 26;3:340 [PMID: 23055996]
  4. Appl Environ Microbiol. 2017 May 31;83(12): [PMID: 28411221]
  5. Appl Environ Microbiol. 2021 Nov 24;87(24):e0186021 [PMID: 34613759]
  6. Nat Commun. 2019 Mar 21;10(1):1305 [PMID: 30899005]
  7. Contraception. 2016 Apr;93(4):337-346 [PMID: 26585883]
  8. BJOG. 2017 Mar;124(4):606-611 [PMID: 28224747]
  9. Front Cell Infect Microbiol. 2020 Feb 12;10:23 [PMID: 32117800]
  10. Front Physiol. 2015 Jun 02;6:164 [PMID: 26082720]
  11. Microbiome. 2014 Feb 03;2(1):4 [PMID: 24484853]
  12. Health Lab Sci. 1973 Apr;10(2):44-54 [PMID: 4633802]
  13. J Bacteriol. 1994 May;176(10):3007-12 [PMID: 8188601]
  14. PLoS One. 2016 Mar 02;11(3):e0150540 [PMID: 26934359]
  15. Sci Transl Med. 2012 May 2;4(132):132ra52 [PMID: 22553250]
  16. Nucleic Acids Res. 2021 Jan 8;49(D1):D498-D508 [PMID: 33211880]
  17. Nat Commun. 2020 Feb 26;11(1):940 [PMID: 32103005]
  18. Antimicrob Agents Chemother. 2017 Nov 22;61(12): [PMID: 28893789]
  19. Front Cell Infect Microbiol. 2021 Jul 13;11:676114 [PMID: 34327149]
  20. Proteomics. 2017 Mar;17(5): [PMID: 28045221]
  21. Front Med (Lausanne). 2018 Jun 13;5:181 [PMID: 29951482]
  22. Arch Gynecol Obstet. 2006 Jan;273(4):195-202 [PMID: 16208476]
  23. J Infect Dis. 2014 Oct 1;210(7):1019-28 [PMID: 24737800]
  24. Annu Rev Microbiol. 2012;66:371-89 [PMID: 22746335]
  25. Am J Obstet Gynecol. 2011 Feb;204(2):120.e1-5 [PMID: 20832044]
  26. Am J Reprod Immunol. 2014 Jun;71(6):531-6 [PMID: 24661438]
  27. J Theor Biol. 2007 Feb 7;244(3):511-7 [PMID: 17028032]
  28. Sci Rep. 2019 Oct 1;9(1):14095 [PMID: 31575935]
  29. J Bacteriol. 2021 Aug 9;203(17):e0021321 [PMID: 34124938]
  30. PLoS One. 2016 Apr 19;11(4):e0153553 [PMID: 27093050]
  31. Microbiome. 2019 Mar 29;7(1):49 [PMID: 30925932]
  32. J Med Microbiol. 1969 Aug;2(3):363-6 [PMID: 4996481]
  33. Biochem J. 1993 Oct 15;295 ( Pt 2):477-83 [PMID: 8240246]
  34. mSphere. 2020 Dec 9;5(6): [PMID: 33298571]
  35. J Biomed Mater Res. 1982 Nov;16(6):839-50 [PMID: 6960000]
  36. FEMS Microbiol Lett. 2005 Nov 1;252(1):175-81 [PMID: 16198511]
  37. PLoS One. 2014 Jul 17;9(7):e102467 [PMID: 25033265]
  38. mSphere. 2020 Aug 12;5(4): [PMID: 32817455]
  39. J Bacteriol. 2023 Feb 22;205(2):e0039322 [PMID: 36744900]
  40. Int J Mol Sci. 2022 May 17;23(10): [PMID: 35628398]
  41. Clin Microbiol Rev. 2016 Apr;29(2):223-38 [PMID: 26864580]
  42. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7 [PMID: 20534435]
  43. Int Microbiol. 2008 Dec;11(4):261-6 [PMID: 19204898]
  44. BJOG. 2020 Jan;127(2):171-180 [PMID: 31237400]
  45. PLoS One. 2014 Sep 12;9(9):e107758 [PMID: 25215504]
  46. Microb Cell Fact. 2018 May 9;17(1):69 [PMID: 29743073]
  47. J Bacteriol. 2019 Jun 10;201(13): [PMID: 30988035]
  48. Microbiol Spectr. 2023 Mar 15;:e0443522 [PMID: 36920187]
  49. Am J Obstet Gynecol. 1964 Mar 1;88:676-9 [PMID: 14128200]
  50. J Infect Dis. 1997 Feb;175(2):406-13 [PMID: 9203662]
  51. Microb Pathog. 2020 Feb 24;142:104063 [PMID: 32061821]
  52. PLoS One. 2014 May 23;9(5):e96701 [PMID: 24858919]
  53. Ann Clin Microbiol Antimicrob. 2011 Feb 17;10:8 [PMID: 21329492]
  54. Nat Commun. 2019 Feb 21;10(1):890 [PMID: 30792386]
  55. Bioengineered. 2013 Nov-Dec;4(6):388-400 [PMID: 23645215]
  56. J Bacteriol. 2019 Mar 13;201(7): [PMID: 30642990]
  57. Nucleic Acids Res. 2022 Jan 7;50(D1):D571-D577 [PMID: 34850161]
  58. J Infect Dis. 1999 Dec;180(6):1863-8 [PMID: 10558942]
  59. Appl Environ Microbiol. 2000 Dec;66(12):5316-21 [PMID: 11097908]
  60. Biochem J. 2012 Feb 1;441(3):763-87 [PMID: 22248338]
  61. Appl Microbiol Biotechnol. 2022 Jun;106(11):4053-4064 [PMID: 35612627]
  62. Am J Obstet Gynecol. 2021 Mar;224(3):251-257 [PMID: 33091407]
  63. Appl Environ Microbiol. 1990 Apr;56(4):1004-11 [PMID: 2187400]
  64. Reprod Sci. 2015 Nov;22(11):1393-8 [PMID: 25878210]
  65. Front Physiol. 2015 Mar 25;6:81 [PMID: 25859220]
  66. BMC Microbiol. 2010 Mar 12;10:77 [PMID: 20226062]
  67. Nat Rev Microbiol. 2006 Feb;4(2):113-20 [PMID: 16415927]
  68. Am J Med. 1983 Jan;74(1):14-22 [PMID: 6600371]
  69. BBA Clin. 2016 Feb 27;5:85-100 [PMID: 27051594]
  70. PLoS One. 2013 Nov 06;8(11):e80074 [PMID: 24223212]
  71. J Clin Microbiol. 1992 May;30(5):1323-6 [PMID: 1583140]
  72. mBio. 2015 Mar 24;6(2): [PMID: 25805726]
  73. Hum Reprod. 2022 Jun 30;37(7):1525-1543 [PMID: 35553675]

MeSH Term

Female
Humans
Gardnerella vaginalis
Lactobacillus
Glycogen
Vagina
Vaginosis, Bacterial
Hydrogen-Ion Concentration

Chemicals

Glycogen

Word Cloud

Created with Highcharts 10.0.0pH5Lvaginal0vaginalisglycogen4jenseniigassericrispatusGLactobacillusGlycogenmetabolismmicrobiomeMSVFBVGardnerellasimulatingfluidgrowthJCP8151Adhealthymedium62GJV-V01specific30startinglevelsphaseextendedablesurvivespeciesresultsinfluencetractBACKGROUND:sppdominatecontributeslow35-4bacterialvaginosisstrictfacultativeanaerobesincludingbecomepredominantleadingincrease> 4enhancesriskobstetricalcomplicationsacquisitionsexuallytransmittedinfectionscervicalcancerFactorscriticalmaintenancetransitionwelldefinedVaginalmayaffectmicroflorathusinfluencingshiftRESULTS:supported63AMinitialconditionsthreeexhibitedlong-termstationarygrowndisplayedlagsuggestinginefficientessentialwithoutusedglucosefour15halfcontent-CONCLUSIONS:suggestvariationscriticallycolonizationlactobacilliaffectingabilitymetabolizefoundcapablebroaderrange0-5utilizationsensitivefunctionalFinallyshowedcancolonizeperiodlongremainsaboveavailabilityvariationGlucoseMedium

Similar Articles

Cited By