Tissue Inhibitor of Metalloproteinases-1 Overexpression Mediates Chemoresistance in Triple-Negative Breast Cancer Cells.

Lisa Agnello, Annachiara d'Argenio, Alessandra Caliendo, Roberto Nilo, Antonella Zannetti, Monica Fedele, Simona Camorani, Laura Cerchia
Author Information
  1. Lisa Agnello: Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), 80131 Naples, Italy. ORCID
  2. Annachiara d'Argenio: Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), 80131 Naples, Italy.
  3. Alessandra Caliendo: Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), 80131 Naples, Italy. ORCID
  4. Roberto Nilo: Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), 80131 Naples, Italy.
  5. Antonella Zannetti: Institute of Biostructures and Bioimaging, National Research Council (CNR), 80145 Naples, Italy. ORCID
  6. Monica Fedele: Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), 80131 Naples, Italy. ORCID
  7. Simona Camorani: Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), 80131 Naples, Italy. ORCID
  8. Laura Cerchia: Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Research Council (CNR), 80131 Naples, Italy. ORCID

Abstract

Triple-negative breast cancer (TNBC) is among the most aggressive breast cancer subtypes. Despite being initially responsive to chemotherapy, patients develop drug-resistant and metastatic tumors. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is a secreted protein with a tumor suppressor function due to its anti-proteolytic activity. Nevertheless, evidence indicates that TIMP-1 binds to the CD63 receptor and activates noncanonical oncogenic signaling in several cancers, but its role in mediating TNBC chemoresistance is still largely unexplored. Here, we show that mesenchymal-like TNBC cells express TIMP-1, whose levels are further increased in cells generated to be resistant to cisplatin (Cis-Pt-R) and doxorubicin (Dox-R). Moreover, public dataset analyses indicate that high TIMP-1 levels are associated with a worse prognosis in TNBC subjected to chemotherapy. Knock-down of TIMP-1 in both Cis-Pt-R and Dox-R cells reverses their resistance by inhibiting AKT activation. Consistently, TNBC cells exposed to recombinant TIMP-1 or TIMP-1-enriched media from chemoresistant cells, acquire resistance to both cisplatin and doxorubicin. Importantly, released TIMP-1 reassociates with plasma membrane by binding to CD63 and, in the absence of CD63 expression, TIMP-1-mediated chemoresistance is blocked. Thus, our results identify TIMP-1 as a new biomarker of TNBC chemoresistance and lay the groundwork for evaluating whether blockade of TIMP-1 signal is a viable treatment strategy.

Keywords

References

  1. Biochim Biophys Acta. 1998 Oct 14;1388(1):21-34 [PMID: 9774703]
  2. Sci Rep. 2017 Apr 20;7:46659 [PMID: 28425453]
  3. J Biol Chem. 2003 Oct 10;278(41):40364-72 [PMID: 12904305]
  4. Semin Cancer Biol. 2020 Feb;60:351-361 [PMID: 31454672]
  5. Cancer Discov. 2019 Feb;9(2):176-198 [PMID: 30679171]
  6. Cells. 2023 Jun 06;12(12): [PMID: 37371036]
  7. Cancers (Basel). 2022 Oct 11;14(20): [PMID: 36291767]
  8. Int J Mol Sci. 2021 Nov 18;22(22): [PMID: 34830320]
  9. Mol Cancer. 2013 Mar 25;12:22 [PMID: 23522389]
  10. Cells. 2021 Oct 12;10(10): [PMID: 34685701]
  11. Cancer Cell. 2019 Mar 18;35(3):347-367 [PMID: 30889378]
  12. Cells. 2019 Aug 22;8(9): [PMID: 31443516]
  13. Pharmaceutics. 2022 Oct 18;14(10): [PMID: 36297659]
  14. Genes (Basel). 2018 Mar 13;9(3): [PMID: 29534016]
  15. J Cell Commun Signal. 2018 Mar;12(1):55-68 [PMID: 29305692]
  16. Ann Oncol. 2014 Aug;25(8):1570-7 [PMID: 24827135]
  17. Sci Rep. 2021 Dec 21;11(1):24374 [PMID: 34934147]
  18. Oncogene. 2022 Mar;41(12):1809-1820 [PMID: 35140332]
  19. Nat Rev Clin Oncol. 2022 Feb;19(2):91-113 [PMID: 34754128]
  20. J Clin Invest. 2009 Jun;119(6):1420-8 [PMID: 19487818]
  21. J Proteome Res. 2013 Sep 6;12(9):4136-51 [PMID: 23909892]
  22. Nat Rev Cancer. 2017 Jan;17(1):38-53 [PMID: 27932800]
  23. Biochim Biophys Acta Rev Cancer. 2018 Apr;1869(2):263-277 [PMID: 29574128]
  24. Chemother Res Pract. 2012;2012:283181 [PMID: 22567280]
  25. Clin Cancer Res. 2007 Apr 15;13(8):2329-34 [PMID: 17438091]
  26. J Neurooncol. 2011 May;103(1):43-58 [PMID: 20835751]
  27. Cancer. 2005 Apr 15;103(8):1676-84 [PMID: 15754326]
  28. Clin Cancer Res. 2011 Mar 1;17(5):1082-9 [PMID: 21233401]
  29. Cancer Sci. 2023 Mar;114(3):921-936 [PMID: 36377249]
  30. Clin Cancer Res. 2011 Apr 15;17(8):2417-25 [PMID: 21487066]
  31. BMC Cancer. 2019 Nov 4;19(1):1039 [PMID: 31684899]
  32. PLoS One. 2016 Jun 16;11(6):e0157368 [PMID: 27310713]
  33. Clin Cancer Res. 2015 Apr 1;21(7):1688-98 [PMID: 25208879]
  34. Clin Cancer Res. 2006 Dec 1;12(23):7054-8 [PMID: 17114213]
  35. Biochim Biophys Acta. 2000 Mar 7;1477(1-2):267-83 [PMID: 10708863]
  36. Cancers (Basel). 2019 Aug 15;11(8): [PMID: 31443242]
  37. Proc Natl Acad Sci U S A. 2012 Feb 7;109(6):E309-16 [PMID: 22223664]
  38. Cancers (Basel). 2019 Aug 29;11(9): [PMID: 31470510]
  39. Cancers (Basel). 2023 Mar 28;15(7): [PMID: 37046670]
  40. Int J Cancer. 1996 Apr 22;69(2):131-4 [PMID: 8608981]
  41. Annu Rev Pathol. 2022 Jan 24;17:181-204 [PMID: 35073169]
  42. Sci Transl Med. 2022 Aug 3;14(656):eabn7571 [PMID: 35921474]
  43. Clin Cancer Res. 2007 Aug 1;13(15 Pt 1):4429-34 [PMID: 17671126]
  44. Breast Cancer Res. 2020 Jun 9;22(1):61 [PMID: 32517735]
  45. Mol Cancer. 2016 Apr 30;15(1):30 [PMID: 27130446]
  46. Int J Mol Sci. 2017 Jul 21;18(7): [PMID: 28754000]
  47. ESMO Open. 2018 May 3;3(Suppl 1):e000357 [PMID: 29765774]
  48. Theranostics. 2018 Oct 6;8(18):5178-5199 [PMID: 30429893]
  49. Cancer Res. 2007 Sep 15;67(18):8615-23 [PMID: 17875701]
  50. Lancet Oncol. 2014 Jun;15(7):747-56 [PMID: 24794243]
  51. EMBO J. 2006 Sep 6;25(17):3934-42 [PMID: 16917503]
  52. Cells. 2019 Dec 18;9(1): [PMID: 31861382]
  53. J Exp Clin Cancer Res. 2016 Sep 20;35(1):148 [PMID: 27644693]
  54. N Engl J Med. 2010 Nov 11;363(20):1938-48 [PMID: 21067385]
  55. Cells. 2023 Jan 12;12(2): [PMID: 36672233]
  56. J Exp Clin Cancer Res. 2021 Jul 22;40(1):239 [PMID: 34294133]
  57. Mol Cancer Res. 2014 Sep;12(9):1324-33 [PMID: 24895412]
  58. Sci Rep. 2020 Feb 7;10(1):2099 [PMID: 32034211]
  59. J Clin Oncol. 2015 Jun 10;33(17):1902-9 [PMID: 25847936]
  60. Pharmaceuticals (Basel). 2018 Nov 13;11(4): [PMID: 30428522]
  61. Pharmaceutics. 2022 Mar 12;14(3): [PMID: 35336001]
  62. Cancer Res. 2005 Feb 1;65(3):898-906 [PMID: 15705888]
  63. Cell Biosci. 2023 Mar 20;13(1):59 [PMID: 36941633]
  64. Sci Transl Med. 2019 Apr 17;11(488): [PMID: 30996079]
  65. Sci Signal. 2008 Jul 08;1(27):re6 [PMID: 18612141]
  66. Cancer. 2011 Feb 1;117(3):517-25 [PMID: 20862742]
  67. Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):E1239-E1248 [PMID: 29367423]
  68. Oncotarget. 2015 Nov 10;6(35):37570-87 [PMID: 26461476]
  69. Mol Cancer. 2019 Mar 30;18(1):52 [PMID: 30925917]
  70. Chin J Cancer Res. 2021 Feb 28;33(1):115-132 [PMID: 33707934]
  71. Drug Resist Updat. 2016 Sep;28:65-81 [PMID: 27620955]
  72. Comput Struct Biotechnol J. 2021 Jul 18;19:4101-4109 [PMID: 34527184]
  73. J Neurooncol. 2009 Oct;95(1):117-128 [PMID: 19430729]
  74. ESMO Open. 2019 May 13;4(Suppl 2):e000504 [PMID: 31231572]
  75. Biochim Biophys Acta. 2010 Jan;1803(1):55-71 [PMID: 20080133]
  76. BBA Clin. 2015 Mar 12;3:257-75 [PMID: 26676166]
  77. BMC Cancer. 2018 Mar 9;18(1):270 [PMID: 29523123]
  78. Trends Cell Biol. 2023 May;33(5):413-426 [PMID: 36163148]
  79. iScience. 2020 Apr 24;23(4):100979 [PMID: 32222697]
  80. JCI Insight. 2021 Apr 22;6(8): [PMID: 33884962]
  81. J Exp Clin Cancer Res. 2020 Sep 7;39(1):180 [PMID: 32892748]
  82. J Oncol Pract. 2017 May;13(5):293-300 [PMID: 28489980]
  83. Cancer Res. 1999 Dec 15;59(24):6267-75 [PMID: 10626822]
  84. Curr Med Chem. 2019;26(42):7694-7713 [PMID: 30182835]

Grants

  1. 23052/Fondazione Associazione Italiana per la Ricerca sul Cancro

MeSH Term

Humans
Triple Negative Breast Neoplasms
Tissue Inhibitor of Metalloproteinase-1
Cisplatin
Drug Resistance, Neoplasm
Doxorubicin

Chemicals

Tissue Inhibitor of Metalloproteinase-1
Cisplatin
Doxorubicin

Word Cloud

Created with Highcharts 10.0.0TIMP-1TNBCcellsCD63chemoresistancebreastcancerchemotherapyTissueinhibitormetalloproteinases-1tumorreceptorlevelscisplatinCis-Pt-RdoxorubicinDox-RresistanceTriple-negativeamongaggressivesubtypesDespiteinitiallyresponsivepatientsdevelopdrug-resistantmetastatictumorssecretedproteinsuppressorfunctiondueanti-proteolyticactivityNeverthelessevidenceindicatesbindsactivatesnoncanonicaloncogenicsignalingseveralcancersrolemediatingstilllargelyunexploredshowmesenchymal-likeexpresswhoseincreasedgeneratedresistantMoreoverpublicdatasetanalysesindicatehighassociatedworseprognosissubjectedKnock-downreversesinhibitingAKTactivationConsistentlyexposedrecombinantTIMP-1-enrichedmediachemoresistantacquireImportantlyreleasedreassociatesplasmamembranebindingabsenceexpressionTIMP-1-mediatedblockedThusresultsidentifynewbiomarkerlaygroundworkevaluatingwhetherblockadesignalviabletreatmentstrategyInhibitorMetalloproteinases-1OverexpressionMediatesChemoresistanceTriple-NegativeBreastCancerCellscelltissuetriple-negativemicroenvironment

Similar Articles

Cited By