Multi-Omic Biomarkers Improve Indeterminate Pulmonary Nodule Malignancy Risk Assessment.

Kristin J Lastwika, Wei Wu, Yuzheng Zhang, Ningxin Ma, Mladen Zečević, Sudhakar N J Pipavath, Timothy W Randolph, A McGarry Houghton, Viswam S Nair, Paul D Lampe, Paul E Kinahan
Author Information
  1. Kristin J Lastwika: Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
  2. Wei Wu: Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA.
  3. Yuzheng Zhang: Program in Biostatistics and Biomathematics, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
  4. Ningxin Ma: Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
  5. Mladen Zečević: Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA. ORCID
  6. Sudhakar N J Pipavath: Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA.
  7. Timothy W Randolph: Program in Biostatistics and Biomathematics, Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA. ORCID
  8. A McGarry Houghton: Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
  9. Viswam S Nair: Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
  10. Paul D Lampe: Translational Research Program, Public Health Sciences Fred Hutchinson Cancer Center, Seattle, WA 98109, USA. ORCID
  11. Paul E Kinahan: Department of Radiology, University of Washington School of Medicine, Seattle, WA 98109, USA.

Abstract

The clinical management of patients with indeterminate pulmonary nodules is associated with unintended harm to patients and better methods are required to more precisely quantify lung cancer risk in this group. Here, we combine multiple noninvasive approaches to more accurately identify lung cancer in indeterminate pulmonary nodules. We analyzed 94 quantitative radiomic imaging features and 41 qualitative semantic imaging variables with molecular biomarkers from blood derived from an antibody-based microarray platform that determines protein, cancer-specific glycan, and autoantibody-antigen complex content with high sensitivity. From these datasets, we created a PSR (plasma, semantic, radiomic) risk prediction model comprising nine blood-based and imaging biomarkers with an area under the receiver operating curve (AUROC) of 0.964 that when tested in a second, independent cohort yielded an AUROC of 0.846. Incorporating known clinical risk factors (age, gender, and smoking pack years) for lung cancer into the PSR model improved the AUROC to 0.897 in the second cohort and was more accurate than a well-characterized clinical risk prediction model (AUROC = 0.802). Our findings support the use of a multi-omics approach to guide the clinical management of indeterminate pulmonary nodules.

Keywords

References

  1. N Engl J Med. 2011 Aug 4;365(5):395-409 [PMID: 21714641]
  2. Mol Imaging Biol. 2021 Apr;23(2):287-298 [PMID: 33030709]
  3. Gut. 2018 Mar;67(3):473-484 [PMID: 27821646]
  4. Proteomes. 2014 Jan 13;2(1):1-17 [PMID: 28250367]
  5. Sci Rep. 2017 Jun 14;7(1):3519 [PMID: 28615677]
  6. Comput Methods Programs Biomed. 2022 Mar;215:106609 [PMID: 34990929]
  7. J Clin Invest. 2021 May 17;131(10): [PMID: 33793424]
  8. Sci Transl Med. 2023 Jan 11;15(678):eadd8469 [PMID: 36630482]
  9. Sci Rep. 2023 Apr 15;13(1):6157 [PMID: 37061539]
  10. Science. 2015 Jan 23;347(6220):1260419 [PMID: 25613900]
  11. Clin Cancer Res. 2015 Jan 15;21(2):484-9 [PMID: 25593345]
  12. JAMA Oncol. 2019 Sep 01;5(9):1318-1324 [PMID: 31246249]
  13. AJR Am J Roentgenol. 2021 Jun;216(6):1411-1422 [PMID: 33470834]
  14. Chest. 2013 May;143(5 Suppl):e93S-e120S [PMID: 23649456]
  15. Cancer Biomark. 2010-2011;8(4-5):293-307 [PMID: 22045360]
  16. Radiology. 2005 Nov;237(2):395-400 [PMID: 16244247]
  17. Science. 2018 Feb 23;359(6378):926-930 [PMID: 29348365]
  18. Arch Intern Med. 1997 Apr 28;157(8):849-55 [PMID: 9129544]
  19. Clin Cancer Res. 2015 Apr 1;21(7):1764-71 [PMID: 25589628]
  20. Mol Oncol. 2007 Dec;1(3):313-20 [PMID: 19383305]
  21. Oral Oncol. 2021 Jan;112:105083 [PMID: 33189001]
  22. J Proteomics. 2014 Jan 16;96:291-9 [PMID: 24185138]
  23. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  24. Mol Cell Proteomics. 2014 Dec;13(12):3484-96 [PMID: 25225358]
  25. N Engl J Med. 2013 Sep 5;369(10):910-9 [PMID: 24004118]
  26. Breast Cancer Res Treat. 2012 Sep;135(2):611-8 [PMID: 22903690]
  27. N Engl J Med. 2020 Feb 6;382(6):503-513 [PMID: 31995683]
  28. J Am Med Inform Assoc. 2020 Apr 1;27(4):621-633 [PMID: 32106284]
  29. J Thorac Dis. 2022 Nov;14(11):4435-4448 [PMID: 36524093]
  30. Eur Respir J. 2021 Jan 14;57(1): [PMID: 32732334]
  31. PLoS One. 2022 Jul 13;17(7):e0268567 [PMID: 35830375]
  32. Am J Respir Crit Care Med. 2012 Feb 15;185(4):363-72 [PMID: 21980032]
  33. Eur J Radiol Open. 2020 Sep 04;7:100267 [PMID: 32944597]
  34. Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:403-408 [PMID: 31945924]
  35. Chest. 2007 Feb;131(2):383-8 [PMID: 17296637]
  36. J Thorac Oncol. 2016 May;11(5):700-708 [PMID: 26961390]
  37. Med Phys. 2019 Nov;46(11):5116-5123 [PMID: 31539450]
  38. Cancer Res. 2017 Nov 1;77(21):e104-e107 [PMID: 29092951]
  39. Chest. 2018 Sep;154(3):491-500 [PMID: 29496499]
  40. Clin Lung Cancer. 2017 Jan;18(1):e27-e34 [PMID: 27530054]
  41. Chest. 2023 Jul;164(1):241-251 [PMID: 36773935]
  42. JAMA Oncol. 2019 Jan 1;5(1):e182815 [PMID: 30128487]
  43. J Thorac Oncol. 2011 May;6(5):955-62 [PMID: 21415775]
  44. Cancer Prev Res (Phila). 2015 Feb;8(2):111-9 [PMID: 25416410]
  45. J Pers Med. 2021 Oct 27;11(11): [PMID: 34834454]
  46. Nat Rev Cancer. 2015 Sep;15(9):540-55 [PMID: 26289314]
  47. Mol Cell Proteomics. 2010 Jul;9(7):1449-60 [PMID: 20467042]
  48. Am J Respir Crit Care Med. 2019 May 15;199(10):1257-1266 [PMID: 30422669]
  49. J Clin Oncol. 2022 Mar 10;40(8):876-883 [PMID: 34995129]
  50. Am J Respir Crit Care Med. 2015 Nov 15;192(10):1208-14 [PMID: 26214244]
  51. Signal Transduct Target Ther. 2021 Aug 30;6(1):307 [PMID: 34456337]
  52. Mol Pharm. 2018 Apr 2;15(4):1627-1634 [PMID: 29537283]
  53. J Proteome Res. 2013 May 3;12(5):2311-20 [PMID: 23541305]
  54. Nature. 2020 Apr;580(7802):245-251 [PMID: 32269342]
  55. J Natl Compr Canc Netw. 2018 Apr;16(4):412-441 [PMID: 29632061]
  56. Radiographics. 2021 Oct;41(6):1717-1732 [PMID: 34597235]
  57. Am J Respir Crit Care Med. 2021 Dec 1;204(11):1306-1316 [PMID: 34464235]
  58. Chest. 2015 Feb;147(2):295-303 [PMID: 25356819]
  59. Lung Cancer. 2022 Jan;163:87-95 [PMID: 34942493]

Grants

  1. U01 CA185097/NCI NIH HHS
  2. P50CA228944/NIH HHS
  3. U01 CA186157/NCI NIH HHS
  4. KL2 TR002317/NCATS NIH HHS
  5. P30CA015704/NIH HHS
  6. P50 CA228944/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0clinicalindeterminatepulmonarynoduleslungcancerriskAUROC0imagingsemanticbiomarkersmodelmanagementpatientsradiomicfeaturesPSRpredictionsecondcohortassociatedunintendedharmbettermethodsrequiredpreciselyquantifygroupcombinemultiplenoninvasiveapproachesaccuratelyidentifyanalyzed94quantitative41qualitativevariablesmolecularbloodderivedantibody-basedmicroarrayplatformdeterminesproteincancer-specificglycanautoantibody-antigencomplexcontenthighsensitivitydatasetscreatedplasmacomprisingnineblood-basedareareceiveroperatingcurve964testedindependentyielded846Incorporatingknownfactorsagegendersmokingpackyearsimproved897accuratewell-characterized=802findingssupportusemulti-omicsapproachguideMulti-OmicBiomarkersImproveIndeterminatePulmonaryNoduleMalignancyRiskAssessmentautoantibodiesglycomicsproteomicsradiomics

Similar Articles

Cited By (1)