Optimizing Electrode Configurations for Wearable EEG Seizure Detection Using Machine Learning.

Hagar Gelbard-Sagiv, Snir Pardo, Nir Getter, Miriam Guendelman, Felix Benninger, Dror Kraus, Oren Shriki, Shay Ben-Sasson
Author Information
  1. Hagar Gelbard-Sagiv: NeuroHelp Ltd., Ramat-Gan 5252181, Israel. ORCID
  2. Snir Pardo: NeuroHelp Ltd., Ramat-Gan 5252181, Israel.
  3. Nir Getter: NeuroHelp Ltd., Ramat-Gan 5252181, Israel.
  4. Miriam Guendelman: NeuroHelp Ltd., Ramat-Gan 5252181, Israel. ORCID
  5. Felix Benninger: Department of Neurology, Rabin Medical Center, Beilinson Hospital, Petach Tikva 4941492, Israel. ORCID
  6. Dror Kraus: Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
  7. Oren Shriki: NeuroHelp Ltd., Ramat-Gan 5252181, Israel.
  8. Shay Ben-Sasson: NeuroHelp Ltd., Ramat-Gan 5252181, Israel.

Abstract

Epilepsy, a prevalent neurological disorder, profoundly affects patients' quality of life due to the unpredictable nature of seizures. The development of a reliable and user-friendly wearable EEG system capable of detecting and predicting seizures has the potential to revolutionize Epilepsy care. However, optimizing electrode configurations for such systems, which is crucial for balancing accuracy and practicality, remains to be explored. This study addresses this gap by developing a systematic approach to optimize electrode configurations for a seizure detection machine-learning algorithm. Our approach was applied to an extensive database of prolonged annotated EEG recordings from 158 Epilepsy patients. Multiple electrode configurations ranging from one to eighteen were assessed to determine the optimal number of electrodes. Results indicated that the performance was initially maintained as the number of electrodes decreased, but a drop in performance was found to have occurred at around eight electrodes. Subsequently, a comprehensive analysis of all eight-electrode configurations was conducted using a computationally intensive workflow to identify the optimal configurations. This approach can inform the mechanical design process of an EEG system that balances seizure detection accuracy with the ease of use and portability. Additionally, this framework holds potential for optimizing hardware in other machine learning applications. The study presents a significant step towards the development of an efficient wearable EEG system for seizure detection.

Keywords

References

  1. J Psychiatr Res. 2010 Mar;44(4):242-52 [PMID: 19762038]
  2. Chest. 2019 Jul;156(1):172-181 [PMID: 30711481]
  3. Front Neurol. 2022 Jan 20;12:817733 [PMID: 35126304]
  4. Nat Commun. 2020 May 1;11(1):2172 [PMID: 32358560]
  5. MMWR Morb Mortal Wkly Rep. 2018 Apr 20;67(15):437-442 [PMID: 29672474]
  6. Biomed Eng Lett. 2018 Aug 11;8(4):373-382 [PMID: 30603222]
  7. Front Hum Neurosci. 2019 Jun 11;13:191 [PMID: 31244629]
  8. Epilepsy Behav. 2004 Dec;5(6):976-80 [PMID: 15582847]
  9. Epilepsia. 2010 Jun;51(6):1069-77 [PMID: 19889013]
  10. Epilepsia. 2022 Feb 3;: [PMID: 35113451]
  11. Seizure. 2016 Oct;41:141-53 [PMID: 27567266]
  12. R Soc Open Sci. 2023 May 3;10(5):230022 [PMID: 37153360]
  13. Cureus. 2020 Sep 20;12(9):e10549 [PMID: 33101797]
  14. Neurology. 2015 Feb 24;84(8):810-7 [PMID: 25616485]
  15. Front Neurol. 2020 Jul 21;11:701 [PMID: 32849189]
  16. Sleep Med Clin. 2021 Jun;16(2):389-408 [PMID: 33985663]
  17. Biomed Eng Online. 2019 Oct 30;18(1):106 [PMID: 31666082]
  18. Neurology. 2014 Nov 18;83(21):1968-77 [PMID: 25339211]
  19. Neuropharmacology. 2020 May 15;168:107790 [PMID: 31560910]
  20. Biomed Eng Lett. 2019 Jan 4;9(1):53-71 [PMID: 30956880]
  21. Brain Inform. 2020 May 25;7(1):5 [PMID: 32451639]
  22. Nat Rev Neurol. 2021 May;17(5):267-284 [PMID: 33723459]
  23. Comput Methods Programs Biomed. 2012 Jun;106(3):127-38 [PMID: 20863589]
  24. IEEE J Transl Eng Health Med. 2018 Aug 17;6:2700410 [PMID: 30245945]
  25. Turk Kardiyol Dern Ars. 2018 Jul;46(5):414-421 [PMID: 30024401]
  26. Epileptic Disord. 2018 Apr 1;20(2):99-115 [PMID: 29620010]
  27. F1000Res. 2019 Oct 29;8: [PMID: 31700611]
  28. Front Neurol. 2021 Aug 18;12:724904 [PMID: 34489858]
  29. J Neurol Sci. 2021 Sep 15;428:117611 [PMID: 34419933]
  30. Lancet Neurol. 2018 Nov;17(11):977-985 [PMID: 30219655]
  31. Neurology. 2017 Apr 25;88(17):1674-1680 [PMID: 28438841]
  32. J Cereb Blood Flow Metab. 2006 Aug;26(8):983-1004 [PMID: 16437061]
  33. Seizure. 2016 Oct;41:179-81 [PMID: 27607108]
  34. IEEE Eng Med Biol Mag. 2010 May-Jun;29(3):44-56 [PMID: 20659857]
  35. PLoS One. 2021 Feb 5;16(2):e0244180 [PMID: 33544703]
  36. Epilepsy Behav. 2016 Apr;57(Pt A):82-89 [PMID: 26926071]
  37. Seizure. 2019 Mar;66:61-69 [PMID: 30802844]
  38. J Neurosci Methods. 2021 Jul 1;358:109220 [PMID: 33971201]
  39. Neurosci Lett. 2017 Jan 10;637:4-10 [PMID: 26222258]
  40. Epilepsy Res. 2019 Feb;150:95-105 [PMID: 30712997]

MeSH Term

Humans
Quality of Life
Electroencephalography
Seizures
Epilepsy
Algorithms
Machine Learning
Electrodes
Wearable Electronic Devices

Word Cloud

Created with Highcharts 10.0.0EEGconfigurationselectrodeseizuredetectionwearablesystemapproachelectrodesseizuresdevelopmentpotentialepilepsyoptimizingaccuracystudyoptimalnumberperformancemachinelearningefficientEpilepsyprevalentneurologicaldisorderprofoundlyaffectspatients'qualitylifedueunpredictablenaturereliableuser-friendlycapabledetectingpredictingrevolutionizecareHoweversystemscrucialbalancingpracticalityremainsexploredaddressesgapdevelopingsystematicoptimizemachine-learningalgorithmappliedextensivedatabaseprolongedannotatedrecordings158patientsMultiplerangingoneeighteenassesseddetermineResultsindicatedinitiallymaintaineddecreaseddropfoundoccurredaroundeightSubsequentlycomprehensiveanalysiseight-electrodeconductedusingcomputationallyintensiveworkflowidentifycaninformmechanicaldesignprocessbalanceseaseuseportabilityAdditionallyframeworkholdshardwareapplicationspresentssignificantsteptowardsOptimizingElectrodeConfigurationsWearableSeizureDetectionUsingMachineLearningcomputationalcontinuousmonitoringconfigurationoptimizationmetricadjustment

Similar Articles

Cited By (1)