Liquid Viscosity Sensor Using a Surface Acoustic Wave Device for Medical Applications Including Blood and Plasma.

Kun-Lin Lee, Glen Kowach, Fang Li, Ioana Voiculescu
Author Information
  1. Kun-Lin Lee: Department of Mechanical Engineering, The City College of the City University of New York, New York, NY 10031, USA. ORCID
  2. Glen Kowach: Department of Chemistry and Biochemistry, The City College of the City University of New York, New York, NY 10031, USA.
  3. Fang Li: Department of Mechanical Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA. ORCID
  4. Ioana Voiculescu: Department of Mechanical Engineering, The City College of the City University of New York, New York, NY 10031, USA.

Abstract

Blood viscosity is the defining health indicator for hyperviscosity syndrome patients. This paper introduces an alternative approach for the real-time monitoring of blood viscosity by employing a surface-horizontal surface acoustic wave (SH-SAW) device at room temperature. A novel bi-layer waveguide is constructed on top of the SAW device. This device enables the SAW sensing of liquid droplets utilizing a bi-layer waveguide, consisting of a zinc oxide (ZnO) enhancement layer and Parlyene C, that facilitates the promotion of the surface horizontal mode. The ZnO piezoelectric thin-film layer enhanced the local particle displacement and dielectric coupling while the Parylene C layer constrained the wave mode at the interface of the piezoelectric material and polymer material. The device was tested with a liquid drop on the SAW delay-line path. Both experimental and finite element analysis results demonstrated the benefits of the bi-layer waveguide. The simulation results confirmed that the displacement field of local particles increased 9 times from 1.261 nm to 11.353 nm with the Parylene C/ZnO bi-layer waveguide structure. The device demonstrated a sensitivity of 3.57 ± 0.3125 kHz shift per centipoise enabling the potential for high precision blood viscosity monitoring.

Keywords

References

  1. Semin Thromb Hemost. 1999;25(2):199-208 [PMID: 10357087]
  2. Sensors (Basel). 2017 Mar 22;17(3): [PMID: 28327504]
  3. Biosens Bioelectron. 2004 Jan 15;19(6):627-32 [PMID: 14683647]
  4. Sensors (Basel). 2020 Sep 03;20(17): [PMID: 32899233]
  5. Clin Appl Thromb Hemost. 2016 May;22(4):386-9 [PMID: 25505013]
  6. Anal Chem. 2001 Dec 15;73(24):5937-44 [PMID: 11791563]
  7. Front Physiol. 2019 Oct 17;10:1329 [PMID: 31749708]
  8. Future Sci OA. 2015 Nov 01;1(4):FSO30 [PMID: 28031903]
  9. Sensors (Basel). 2015 Jun 11;15(6):13839-50 [PMID: 26110408]

Grants

  1. W911NF-13-D-0001/US Army Research Office

MeSH Term

Humans
Viscosity
Zinc Oxide
Sound
Polymers

Chemicals

parylene
Zinc Oxide
Polymers

Word Cloud

Created with Highcharts 10.0.0devicewaveguidebi-layerviscositysurfaceSAWZnOlayerpiezoelectricBloodmonitoringbloodacousticwaveSH-SAWliquidCmodethin-filmlocaldisplacementParylenematerialresultsdemonstratednmdefininghealthindicatorhyperviscositysyndromepatientspaperintroducesalternativeapproachreal-timeemployingsurface-horizontalroomtemperaturenovelconstructedtopenablessensingdropletsutilizingconsistingzincoxideenhancementParlyenefacilitatespromotionhorizontalenhancedparticledielectriccouplingconstrainedinterfacepolymertesteddropdelay-linepathexperimentalfiniteelementanalysisbenefitssimulationconfirmedfieldparticlesincreased9times126111353C/ZnOstructuresensitivity357±03125kHzshiftpercentipoiseenablingpotentialhighprecisionLiquidViscositySensorUsingSurfaceAcousticWaveDeviceMedicalApplicationsIncludingPlasmaquartzwaves

Similar Articles

Cited By (1)