The effects of subtoxic dose of acetaminophen combined with exercise on the liver of rats.

I Aksu, M Kiray, C Gencoglu, A Tas, O Acikgoz
Author Information
  1. I Aksu: Department of Physiology, Dokuz Eylul University Medical Faculty, Balcova, Izmir, Republic of Türkiye. muge.kiray@deu.edu.tr.

Abstract

Regular physical exercise is beneficial to the body. Acute exercise causes oxidant stress in many tissues including the liver by creating an unbalanced status between oxidant and antioxidant levels. Analgesic drugs are commonly consumed to reduce the pain after exercise. Acetaminophen (APAP), commonly used as an over-the-counter analgesic, can cause hepatotoxicity. The aim of this study was to investigate the effect and underlying mechanisms of APAP at subtoxic dose, which is given after the acute and exhaustive exercise on the rat livers. Male Wistar rats weighing 200-250 g were divided into 6 groups each consisting of 7 rats/group; Control, APAP (250 mg/kg, ip), Acute Exercise (AEx), Acute Exhaustive Exercise (AEEx), Acute Exercise and APAP (AEx+APAP) and Acute Exhaustive Exercise and APAP (AEEx+APAP) groups. Rats were exercised at moderate intensity or exhaustive on the treadmill and then received APAP. Tissue MDA levels were significantly increased in AEEx, AEx+APAP and AEEx+APAP groups compared with the control. There was no significant difference in GSH levels between groups. Tissue Sirtuin1 (Sirt1) levels of APAP, AEx and AEEx groups were significantly less than control. There was no significant difference between groups in VEGF levels. Liver damage score was significantly higher in all groups compared with control group. As a result, this study shows that subtoxic dose of APAP treatment alone or in combination with acute or exhaustive treadmill exercise can cause oxidative liver damage by affecting Sirt1 levels and without affecting VEGF levels.

References

  1. Br J Sports Med. 2000 Dec;34(6):409-10 [PMID: 11131224]
  2. Arch Physiol Biochem. 2022 Oct;128(5):1215-1220 [PMID: 32401063]
  3. Biomed Pharmacother. 2021 Nov;143:112215 [PMID: 34649346]
  4. Mol Cell Biochem. 2003 Nov;253(1-2):307-12 [PMID: 14619981]
  5. Inflammation. 2020 Oct;43(5):1589-1598 [PMID: 32410071]
  6. Toxicol Pathol. 2008 Jul;36(5):714-9 [PMID: 18648099]
  7. Braz J Biol. 2019 Apr-Jun;79(2):257-262 [PMID: 30088525]
  8. Pharm Biol. 2021 Dec;59(1):146-156 [PMID: 33556299]
  9. J Physiol Pharmacol. 2020 Dec;71(6): [PMID: 33727425]
  10. Biosci Biotechnol Biochem. 2021 Feb 24;85(3):520-527 [PMID: 33624779]
  11. Anal Biochem. 2017 May 1;524:13-30 [PMID: 27789233]
  12. Scand J Med Sci Sports. 2020 Feb;30(2):264-271 [PMID: 31618484]
  13. J Appl Physiol (1985). 2001 Apr;90(4):1219-26 [PMID: 11247917]
  14. FASEB J. 1999 Jan;13(1):9-22 [PMID: 9872925]
  15. J Gastroenterol Hepatol. 2013 Aug;28 Suppl 1:26-32 [PMID: 23855292]
  16. Pharm Biol. 2021 Dec;59(1):31-39 [PMID: 33403907]
  17. Antioxid Redox Signal. 2018 May 1;28(13):1187-1208 [PMID: 29084443]
  18. Arch Toxicol. 2007 Oct;81(10):729-41 [PMID: 17431590]
  19. Physiol Res. 2015;64(Suppl 4):S477-S487 [PMID: 26681077]
  20. Int J Biochem Cell Biol. 2007;39(1):44-84 [PMID: 16978905]
  21. Hepatology. 2005 Dec;42(6):1364-72 [PMID: 16317692]
  22. Exp Gerontol. 2012 Dec;47(12):925-35 [PMID: 22940286]
  23. Drug Chem Toxicol. 2022 Sep;45(5):2131-2139 [PMID: 33832400]
  24. PeerJ. 2018 Sep 10;6:e5522 [PMID: 30221089]
  25. Neurosci Lett. 2006 Oct 2;406(1-2):148-51 [PMID: 16905254]
  26. Chin J Physiol. 2009 Oct 31;52(5):306-15 [PMID: 20034235]
  27. Toxicol Ind Health. 2016 Jan;32(1):39-46 [PMID: 23907830]
  28. J Biochem Mol Toxicol. 2004;18(6):361-8 [PMID: 15674847]
  29. J Appl Physiol (1985). 1992 Feb;72(2):549-54 [PMID: 1559931]
  30. Front Physiol. 2022 Dec 01;13:1052608 [PMID: 36531176]
  31. Am J Prev Med. 2011 Jun;40(6):585-92 [PMID: 21565648]
  32. Front Pharmacol. 2022 Aug 19;13:959661 [PMID: 36059962]
  33. Biomed Pharmacother. 2022 Nov;155:113805 [PMID: 36271578]
  34. Environ Sci Pollut Res Int. 2021 Nov;28(44):62975-62990 [PMID: 34218375]
  35. ScientificWorldJournal. 2021 Jul 6;2021:6618273 [PMID: 34326710]
  36. Am J Physiol Gastrointest Liver Physiol. 2006 Jul;291(1):G102-9 [PMID: 16565415]
  37. Anal Bioanal Chem. 2013 Mar;405(8):2635-42 [PMID: 23377112]
  38. J Cell Physiol. 2019 Jul;234(7):11960-11968 [PMID: 30536657]
  39. Molecules. 2022 Apr 28;27(9): [PMID: 35566153]
  40. Free Radic Biol Med. 2013 Aug;61:95-110 [PMID: 23542362]
  41. Physiol Res. 2020 Jul 16;69(3):461-466 [PMID: 32469232]
  42. Evid Based Complement Alternat Med. 2012;2012:932165 [PMID: 21941591]
  43. Eur J Drug Metab Pharmacokinet. 1991 Jan-Mar;16(1):59-68 [PMID: 1936063]
  44. J Ethnopharmacol. 2013 Dec 12;150(3):835-42 [PMID: 24036165]
  45. Sci Rep. 2014 Dec 12;4:7456 [PMID: 25503852]

MeSH Term

Rats
Male
Animals
Acetaminophen
Rats, Wistar
Vascular Endothelial Growth Factor A
Sirtuin 1
Liver
Analgesics
Oxidative Stress
Oxidants
Chemical and Drug Induced Liver Injury

Chemicals

Acetaminophen
Vascular Endothelial Growth Factor A
Sirtuin 1
Analgesics
Oxidants

Word Cloud

Created with Highcharts 10.0.0APAPlevelsgroupsexerciseAcuteExerciseliversubtoxicdoseexhaustiveAEExsignificantlycontroloxidantcommonlycancausestudyacuteratsAExExhaustiveAEx+APAPAEEx+APAPtreadmillTissuecomparedsignificantdifferenceSirt1VEGFdamageaffectingRegularphysicalbeneficialbodycausesstressmanytissuesincludingcreatingunbalancedstatusantioxidantAnalgesicdrugsconsumedreducepainAcetaminophenusedover-the-counteranalgesichepatotoxicityaiminvestigateeffectunderlyingmechanismsgivenratliversMaleWistarweighing200-250gdivided6consisting7rats/groupControl250mg/kgipRatsexercisedmoderateintensityreceivedMDAincreasedGSHSirtuin1lessLiverscorehighergroupresultshowstreatmentalonecombinationoxidativewithouteffectsacetaminophencombined

Similar Articles

Cited By