Signaling and crosstalk of rhizobacterial and plant hormones that mediate abiotic stress tolerance in plants.

B N Aloo, J Dessureault-Rompré, V Tripathi, B O Nyongesa, B A Were
Author Information
  1. B N Aloo: Department of Biological Sciences, University of Eldoret, Eldoret, Kenya.
  2. J Dessureault-Rompré: Department of Soil and Agri-Food Engineering, Laval University, Quebec, QC, Canada.
  3. V Tripathi: Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India.
  4. B O Nyongesa: Department of Biological Sciences, University of Eldoret, Eldoret, Kenya.
  5. B A Were: Department of Biological Sciences, University of Eldoret, Eldoret, Kenya.

Abstract

Agricultural areas exhibiting numerous abiotic stressors, such as elevated water stress, temperatures, and salinity, have grown as a result of climate change. As such, abiotic stresses are some of the most pressing issues in contemporary agricultural production. Understanding plant responses to abiotic stressors is important for global food security, climate change adaptation, and improving crop resilience for sustainable agriculture, Over the decades, explorations have been made concerning plant tolerance to these environmental stresses. Plant growth-promoting rhizobacteria (PGPR) and their phytohormones are some of the players involved in developing resistance to abiotic stress in plants. Several studies have investigated the part of phytohormones in the ability of plants to withstand and adapt to non-living environmental factors, but very few have focused on rhizobacterial hormonal signaling and crosstalk that mediate abiotic stress tolerance in plants. The main objective of this review is to evaluate the functions of PGPR phytohormones in plant abiotic stress tolerance and outline the current research on rhizobacterial hormonal communication and crosstalk that govern plant abiotic stress responses. The review also includes the gene networks and regulation under diverse abiotic stressors. The review is important for understanding plant responses to abiotic stresses using PGPR phytohormones and hormonal signaling. It is envisaged that PGPR offer a useful approach to increasing plant tolerance to various abiotic stresses. However, further studies can reveal the unclear patterns of hormonal interactions between plants and rhizobacteria that mediate abiotic stress tolerance.

Keywords

References

  1. Microorganisms. 2017 Jul 26;5(3): [PMID: 28933739]
  2. Physiol Plant. 2017 Dec;161(4):502-514 [PMID: 28786221]
  3. Ecotoxicol Environ Saf. 2019 Oct 30;182:109460 [PMID: 31349103]
  4. Int J Mol Sci. 2022 Feb 21;23(4): [PMID: 35216487]
  5. Chemosphere. 2009 Sep;77(2):153-60 [PMID: 19647283]
  6. Microorganisms. 2021 Oct 22;9(11): [PMID: 34835329]
  7. Ecotoxicol Environ Saf. 2020 Apr 1;192:110315 [PMID: 32058162]
  8. Appl Biochem Biotechnol. 2016 Nov;180(5):872-882 [PMID: 27215915]
  9. Plant Physiol Biochem. 2011 Apr;49(4):427-34 [PMID: 21300550]
  10. J Bacteriol. 2007 Nov;189(21):7626-33 [PMID: 17766418]
  11. Front Microbiol. 2020 Nov 30;11:569512 [PMID: 33424780]
  12. J Environ Manage. 2020 Jul 1;265:110522 [PMID: 32275244]
  13. Appl Microbiol Biotechnol. 2013 Oct;97(20):9155-64 [PMID: 23982328]
  14. Sci Total Environ. 2020 Sep 10;734:139480 [PMID: 32464386]
  15. Front Plant Sci. 2022 Feb 17;12:770084 [PMID: 35251059]
  16. Antioxidants (Basel). 2020 Jul 29;9(8): [PMID: 32751256]
  17. Front Plant Sci. 2018 Mar 27;9:416 [PMID: 29636768]
  18. Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:89-118 [PMID: 11337393]
  19. Front Microbiol. 2019 Jul 09;10:1506 [PMID: 31338077]
  20. Plants (Basel). 2020 Oct 31;9(11): [PMID: 33142829]
  21. Front Plant Sci. 2017 Oct 12;8:1767 [PMID: 29075280]
  22. Anal Biochem. 2018 Jun 1;550:99-108 [PMID: 29704477]
  23. PLoS One. 2018 Feb 15;13(2):e0191218 [PMID: 29447189]
  24. Plant Cell Rep. 2021 Aug;40(8):1301-1303 [PMID: 34274991]
  25. Res Microbiol. 2010 Apr;161(3):219-26 [PMID: 20138146]
  26. J Plant Physiol. 2022 Jan 31;270:153629 [PMID: 35151004]
  27. Sci Rep. 2022 Apr 4;12(1):5599 [PMID: 35379908]
  28. Int J Mol Sci. 2021 Aug 28;22(17): [PMID: 34502233]
  29. GM Crops Food. 2014 Apr-Jun;5(2):87-96 [PMID: 24710064]
  30. Sci Rep. 2018 Feb 23;8(1):3560 [PMID: 29476114]
  31. Biol Lett. 2014 Jul;10(7): [PMID: 25079493]
  32. Trends Biotechnol. 2010 Mar;28(3):142-9 [PMID: 20044160]
  33. Trends Plant Sci. 2022 Jan;27(1):80-91 [PMID: 34481715]
  34. Front Microbiol. 2022 Mar 16;12:798525 [PMID: 35368293]
  35. Plant Cell Rep. 2018 Nov;37(11):1557-1569 [PMID: 30062625]
  36. J Exp Bot. 2011 May;62(8):2827-40 [PMID: 21282330]
  37. Sci Rep. 2018 Dec 19;8(1):17982 [PMID: 30568257]
  38. Front Plant Sci. 2018 Oct 17;9:1500 [PMID: 30386359]
  39. Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499 [PMID: 15012199]
  40. Plants (Basel). 2021 Jun 03;10(6): [PMID: 34205214]
  41. PLoS One. 2022 Feb 4;17(2):e0262932 [PMID: 35120147]
  42. Front Plant Sci. 2014 Nov 11;5:640 [PMID: 25426135]
  43. PLoS One. 2016 Jun 16;11(6):e0157439 [PMID: 27310261]
  44. Sci Rep. 2017 May 2;7(1):1300 [PMID: 28465574]
  45. Plant Physiol Biochem. 2014 Nov;84:115-124 [PMID: 25270162]
  46. J Exp Bot. 2015 Aug;66(16):4863-71 [PMID: 25911740]
  47. PLoS One. 2018 Aug 13;13(8):e0199933 [PMID: 30102704]
  48. J Hazard Mater. 2020 Jul 5;393:122424 [PMID: 32143165]
  49. Front Plant Sci. 2016 Apr 12;7:492 [PMID: 27148317]
  50. Trends Plant Sci. 2006 Apr;11(4):176-83 [PMID: 16531097]
  51. Front Plant Sci. 2017 Jun 29;8:1143 [PMID: 28706529]
  52. Front Microbiol. 2022 May 19;13:886041 [PMID: 35663903]
  53. Plant Cell Environ. 2021 Jul;44(7):1992-2005 [PMID: 33745205]
  54. J Food Sci. 2020 Jan;85(1):14-20 [PMID: 31869858]
  55. Biotechnol Adv. 2011 Mar-Apr;29(2):248-58 [PMID: 21147211]
  56. Environ Pollut. 2020 Jul;262:114348 [PMID: 32182536]
  57. Plant Signal Behav. 2013 Jul;8(7):e24737 [PMID: 23656876]
  58. J Gen Appl Microbiol. 2016 Nov 25;62(5):258-265 [PMID: 27725404]
  59. Appl Environ Microbiol. 2012 Nov;78(22):8056-61 [PMID: 22961897]
  60. Int J Mol Sci. 2012;13(3):3189-3202 [PMID: 22489148]
  61. Front Microbiol. 2017 Oct 31;8:2104 [PMID: 29163398]
  62. Front Plant Sci. 2019 Oct 18;10:1349 [PMID: 31681397]
  63. J Integr Plant Biol. 2020 Jan;62(1):118-131 [PMID: 31785071]
  64. Front Plant Sci. 2021 May 25;12:669693 [PMID: 34113368]
  65. J Fungi (Basel). 2022 Apr 10;8(4): [PMID: 35448615]
  66. Chemosphere. 2021 Jun;272:129821 [PMID: 35534959]
  67. Plant Biol (Stuttg). 2018 Mar;20(2):271-279 [PMID: 29247572]
  68. Plant Sci. 2014 Sep;226:2-13 [PMID: 25113445]
  69. Mol Plant Microbe Interact. 2015 Sep;28(9):1049-58 [PMID: 26035128]
  70. Physiol Plant. 2021 Jun;172(2):289-303 [PMID: 32459861]
  71. Biochem J. 2019 Oct 15;476(19):2705-2724 [PMID: 31654057]
  72. Front Plant Sci. 2020 Nov 30;11:601009 [PMID: 33329666]
  73. Front Microbiol. 2017 Dec 14;8:2466 [PMID: 29312178]
  74. Metabolites. 2022 Jan 04;12(1): [PMID: 35050160]
  75. J Trace Elem Med Biol. 2005;19(1):91-5 [PMID: 16240678]
  76. Plant Physiol Biochem. 2015 Feb;87:17-25 [PMID: 25532120]
  77. Curr Opin Microbiol. 2017 Jun;37:42-47 [PMID: 28437665]
  78. Front Microbiol. 2022 Jul 11;13:898979 [PMID: 35898908]
  79. PLoS One. 2020 Apr 16;15(4):e0231348 [PMID: 32298338]
  80. BMC Plant Biol. 2016 Apr 14;16:86 [PMID: 27079791]
  81. Biochem J. 2012 May 15;444(1):11-25 [PMID: 22533671]
  82. PLoS One. 2017 Mar 10;12(3):e0173203 [PMID: 28282395]
  83. PLoS One. 2020 Mar 16;15(3):e0228563 [PMID: 32176700]
  84. Front Plant Sci. 2016 Aug 31;7:1335 [PMID: 27630659]
  85. PLoS One. 2015 Feb 26;10(2):e0116971 [PMID: 25719552]
  86. Plant J. 2000 Aug;23(3):363-74 [PMID: 10929129]
  87. Biomolecules. 2020 Aug 24;10(9): [PMID: 32847137]
  88. Heliyon. 2020 Oct 26;6(10):e05321 [PMID: 33145448]
  89. Appl Environ Microbiol. 2002 Aug;68(8):3795-801 [PMID: 12147474]
  90. Physiol Plant. 2022 Mar;174(2):e13676 [PMID: 35316540]
  91. Front Nutr. 2020 Nov 23;7:596307 [PMID: 33330596]

Word Cloud

Created with Highcharts 10.0.0abioticstressplanttolerancephytohormonesplantsstressesPGPRhormonalstressorsresponsesrhizobacteriarhizobacterialcrosstalkmediatereviewwaterclimatechangeimportantenvironmentalstudiessignalingAgriculturalareasexhibitingnumerouselevatedtemperaturessalinitygrownresultpressingissuescontemporaryagriculturalproductionUnderstandingglobalfoodsecurityadaptationimprovingcropresiliencesustainableagriculturedecadesexplorationsmadeconcerningPlantgrowth-promotingplayersinvolveddevelopingresistanceSeveralinvestigatedpartabilitywithstandadaptnon-livingfactorsfocusedmainobjectiveevaluatefunctionsoutlinecurrentresearchcommunicationgovernalsoincludesgenenetworksregulationdiverseunderstandingusingenvisagedofferusefulapproachincreasingvariousHowevercanrevealunclearpatternsinteractionsSignalinghormonesdroughtgrowthpromotingtemperature

Similar Articles

Cited By