Development of Accurate Long-lead COVID-19 Forecast.

Wan Yang, Jeffrey Shaman
Author Information
  1. Wan Yang: Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America. ORCID
  2. Jeffrey Shaman: Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America.

Abstract

Coronavirus disease 2019 (COVID-19) will likely remain a major public health burden; accurate forecast of COVID-19 epidemic outcomes several months into the future is needed to support more proactive planning. Here, we propose strategies to address three major forecast challenges, i.e., error growth, the emergence of new variants, and infection seasonality. Using these strategies in combination we generate retrospective predictions of COVID-19 cases and deaths 6 months in the future for 10 representative US states. Tallied over >25,000 retrospective predictions through September 2022, the forecast approach using all three strategies consistently outperformed a baseline forecast approach without these strategies across different variant waves and locations, for all forecast targets. Overall, probabilistic forecast accuracy improved by 64% and 38% and point prediction accuracy by 133% and 87% for cases and deaths, respectively. Real-time 6-month lead predictions made in early October 2022 suggested large attack rates in most states but a lower burden of deaths than previous waves during October 2022 -March 2023; these predictions are in general accurate compared to reported data. The superior skill of the forecast methods developed here demonstrate means for generating more accurate long-lead forecast of COVID-19 and possibly other infectious diseases.

References

  1. Nat Commun. 2017 Oct 13;8(1):925 [PMID: 29030543]
  2. Elife. 2022 Jun 21;11: [PMID: 35726851]
  3. PLoS One. 2012;7(10):e46789 [PMID: 23056454]
  4. Science. 2022 Mar 11;375(6585):1116-1121 [PMID: 35271324]
  5. J Infect Dis. 2020 Sep 1;222(7):1090-1097 [PMID: 32691843]
  6. mSphere. 2020 Jul 1;5(4): [PMID: 32611701]
  7. Elife. 2021 Jul 13;10: [PMID: 33904403]
  8. Am J Public Health. 2022 Jun;112(6):839-842 [PMID: 35420897]
  9. PLoS Comput Biol. 2019 Feb 28;15(2):e1006783 [PMID: 30817754]
  10. Nat Rev Microbiol. 2022 May;20(5):251-252 [PMID: 35288685]
  11. Elife. 2022 Aug 09;11: [PMID: 35943138]
  12. J R Soc Interface. 2022 Jun;19(191):20210900 [PMID: 35670221]
  13. Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27456-27464 [PMID: 33051302]
  14. MMWR Morb Mortal Wkly Rep. 2021 May 14;70(19):719-724 [PMID: 33988185]
  15. PLoS Comput Biol. 2019 Feb 27;15(2):e1006742 [PMID: 30811396]
  16. PLoS Comput Biol. 2017 Nov 16;13(11):e1005844 [PMID: 29145389]
  17. Nat Commun. 2021 Sep 22;12(1):5573 [PMID: 34552095]
  18. Lancet Digit Health. 2022 Oct;4(10):e738-e747 [PMID: 36150782]
  19. PLoS Comput Biol. 2021 Jun 9;17(6):e1009050 [PMID: 34106917]
  20. Environ Res. 2021 Apr;195:110874 [PMID: 33610582]
  21. Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):3146-3154 [PMID: 30647115]
  22. Nat Hum Behav. 2021 Jul;5(7):947-953 [PMID: 33972767]
  23. Annu Rev Virol. 2020 Sep 29;7(1):83-101 [PMID: 32196426]
  24. PLoS Pathog. 2007 Oct 19;3(10):1470-6 [PMID: 17953482]
  25. Geohealth. 2021 Jun 01;5(6):e2021GH000413 [PMID: 34095688]

Grants

  1. NU38OT000297/CDC HHS
  2. R01 AI145883/NIAID NIH HHS
  3. R01 AI163023/NIAID NIH HHS

MeSH Term

Humans
COVID-19
Retrospective Studies
Epidemics
Incidence
Forecasting

Word Cloud

Created with Highcharts 10.0.0forecastCOVID-19strategiespredictionsaccuratedeaths2022majorburdenmonthsfuturethreeretrospectivecasesstatesapproachwavesaccuracyOctoberCoronavirusdisease2019willlikelyremainpublichealthepidemicoutcomesseveralneededsupportproactiveplanningproposeaddresschallengesieerrorgrowthemergencenewvariantsinfectionseasonalityUsingcombinationgenerate610representativeUSTallied>25000SeptemberusingconsistentlyoutperformedbaselinewithoutacrossdifferentvariantlocationstargetsOverallprobabilisticimproved64%38%pointprediction133%87%respectivelyReal-time6-monthleadmadeearlysuggestedlargeattackrateslowerprevious-March2023generalcomparedreporteddatasuperiorskillmethodsdevelopeddemonstratemeansgeneratinglong-leadpossiblyinfectiousdiseasesDevelopmentAccurateLong-leadForecast

Similar Articles

Cited By