Increasing trend of antibiotic resistance in Shigella in Bangladesh: a plasmid-mediated transfer of mphA macrolide resistance gene.

Asaduzzaman Asad, Israt Jahan, Moriam Akter Munni, Ruma Begum, Morium Akter Mukta, Kazi Saif, Shah Nayeem Faruque, Shoma Hayat, Zhahirul Islam
Author Information
  1. Asaduzzaman Asad: International Centre for Diarrhoeal Disease Research.
  2. Israt Jahan: International Centre for Diarrhoeal Disease Research.
  3. Moriam Akter Munni: International Centre for Diarrhoeal Disease Research.
  4. Ruma Begum: International Centre for Diarrhoeal Disease Research.
  5. Morium Akter Mukta: International Centre for Diarrhoeal Disease Research.
  6. Kazi Saif: International Centre for Diarrhoeal Disease Research.
  7. Shah Nayeem Faruque: International Centre for Diarrhoeal Disease Research.
  8. Shoma Hayat: International Centre for Diarrhoeal Disease Research.
  9. Zhahirul Islam: International Centre for Diarrhoeal Disease Research.

Abstract

shigellosis remains a common gastrointestinal disease mostly in children <5 years of age in developing countries. Azithromycin (AZM), a macrolide, is currently the first-line treatment for shigellosis in Bangladesh; ciprofloxacin (CIP) and ceftriaxone (CRO) are also used frequently. We aimed to evaluate the current epidemiology of antimicrobial resistance (AMR) and mechanism(s) of increasing macrolide resistance in in Bangladesh. A total of 2407 clinical isolates of from 2009 to 2016 were studied. Over the study period, was gradually increasing and become predominant (55%) over (36%) by 2016. We used CLSI-guided epidemiological cut-off value (ECV) for AZM in to set resistance breakpoints (zone-diameter ��� 15 mm for and ��� 11 mm for ). Between 2009 and 2016, AZM resistance increased from 22% to approximately 60%, CIP resistance increased by 40%, and CRO resistance increased from zero to 15%. The A gene was the key macrolide resistance factor in ; a 63MDa conjugative middle-range plasmid was harboring AZM and CRO resistance factors. Our findings show that, especially after 2014, there has been a rapid increase in resistance to the three most effective antibiotics. The rapid spread of macrolide (AZM) resistance genes among are driven by horizontal gene transfer rather than direct lineage.

References

  1. Pediatr Clin North Am. 2017 Aug;64(4):799-814 [PMID: 28734511]
  2. Antimicrob Agents Chemother. 2004 Sep;48(9):3451-6 [PMID: 15328110]
  3. Antimicrob Agents Chemother. 2018 Mar 27;62(4): [PMID: 29378707]
  4. Mol Microbiol. 1991 Sep;5(9):2171-80 [PMID: 1662762]
  5. PLoS One. 2022 Nov 21;17(11):e0277574 [PMID: 36409683]
  6. Infect Drug Resist. 2019 Oct 07;12:3137-3167 [PMID: 31632102]
  7. Microbiol Resour Announc. 2021 Oct 21;10(42):e0085421 [PMID: 34672712]
  8. Emerg Infect Dis. 2009 Oct;15(10):1648-50 [PMID: 19861064]
  9. Travel Med Infect Dis. 2016 Jul-Aug;14(4):407-13 [PMID: 27233679]
  10. Braz J Microbiol. 2010 Oct;41(4):966-77 [PMID: 24031576]
  11. Emerg Infect Dis. 2017 Feb;23(2):332-335 [PMID: 28098543]
  12. Bull World Health Organ. 1999;77(8):651-66 [PMID: 10516787]
  13. PLoS One. 2013 Dec 18;8(12):e82601 [PMID: 24367527]
  14. Cochrane Database Syst Rev. 2010 Jan 20;(1):CD006784 [PMID: 20091606]
  15. Epidemiol Infect. 1989 Jun;102(3):421-8 [PMID: 2661251]
  16. J Clin Microbiol. 2019 Mar 28;57(4): [PMID: 30700507]
  17. Paediatr Int Child Health. 2018 Nov;38(sup1):S50-S65 [PMID: 29790845]
  18. Antimicrob Agents Chemother. 1987 Mar;31(3):404-9 [PMID: 3579257]
  19. Emerg Infect Dis. 2016 Nov;22(11):1948-1952 [PMID: 27767929]
  20. Vaccine. 2017 Dec 14;35(49 Pt A):6783-6789 [PMID: 28765005]
  21. Infect Genet Evol. 2015 Mar;30:15-18 [PMID: 25461693]
  22. Front Microbiol. 2018 Mar 05;9:311 [PMID: 29556221]
  23. Emerg Infect Dis. 2008 Aug;14(8):1297-9 [PMID: 18680661]
  24. Lancet. 1975 Jan 11;1(7898):88-90 [PMID: 46035]
  25. Mil Med. 2017 Sep;182(S2):17-25 [PMID: 28885920]
  26. J Clin Microbiol. 2002 Jul;40(7):2490-7 [PMID: 12089268]
  27. Epidemiol Infect. 2015 Feb;143(3):470-7 [PMID: 24763083]
  28. PLoS Negl Trop Dis. 2015 Jun 11;9(6):e0003708 [PMID: 26068698]
  29. J Antimicrob Chemother. 2017 Nov 01;72(11):3181-3186 [PMID: 28961759]
  30. Lancet Infect Dis. 2005 Aug;5(8):481-93 [PMID: 16048717]
  31. J Health Popul Nutr. 2007 Jun;25(2):158-67 [PMID: 17985817]
  32. Lancet. 2013 Jul 20;382(9888):209-22 [PMID: 23680352]
  33. Antimicrob Agents Chemother. 1989 Aug;33(8):1354-7 [PMID: 2478074]
  34. Lancet. 1987 Aug 22;2(8556):419-21 [PMID: 2887725]
  35. J Pediatr Pharmacol Ther. 2008 Jan;13(1):29-43 [PMID: 23055862]
  36. Emerg Infect Dis. 2016 Sep;22(9):1640-3 [PMID: 27532684]
  37. Emerg Infect Dis. 2016 Feb;23(2):345-346 [PMID: 28098533]
  38. J Clin Microbiol. 2001 Oct;39(10):3757-9 [PMID: 11574611]
  39. Lancet Infect Dis. 2015 Aug;15(8):913-21 [PMID: 25936611]
  40. J Clin Microbiol. 2021 Nov 18;59(12):e0021321 [PMID: 34550809]
  41. Pathog Immun. 2017;2(1):89-101 [PMID: 28603782]
  42. J Bacteriol. 1981 Mar;145(3):1365-73 [PMID: 7009583]
  43. J Med Microbiol. 1999 Aug;48(8):781-784 [PMID: 10451002]
  44. MMWR Morb Mortal Wkly Rep. 2014 Feb 14;63(6):132-3 [PMID: 24522098]
  45. Clin Infect Dis. 2002 Feb 15;34(4):482-92 [PMID: 11797175]
  46. J Clin Microbiol. 2003 Nov;41(11):5053-8 [PMID: 14605138]
  47. Emerg Infect Dis. 2014 May;20(5):854-6 [PMID: 24750584]
  48. Emerg Infect Dis. 2016 Jun;22(6):1083-5 [PMID: 27191035]
  49. FEMS Microbiol Rev. 2011 Sep;35(5):820-55 [PMID: 21564142]
  50. Pediatr Infect Dis J. 2014 Nov;33(11):1204-5 [PMID: 25361413]
  51. Arch Microbiol. 2011 Nov;193(11):767-74 [PMID: 21842348]
  52. J Clin Microbiol. 1992 Nov;30(11):2801-6 [PMID: 1452650]
  53. Microbiol Spectr. 2022 Aug 31;10(4):e0074122 [PMID: 35876510]

Grants

  1. D43 TW010540/FIC NIH HHS
  2. K43 TW011447/FIC NIH HHS

Word Cloud

Created with Highcharts 10.0.0resistanceAZMmacrolideCRO2016increasedgeneBangladeshCIPusedincreasing2009���mmrapidtransferShigellosisremainscommongastrointestinaldiseasemostlychildren<5yearsagedevelopingcountriesAzithromycincurrentlyfirst-linetreatmentshigellosisciprofloxacinceftriaxonealsofrequentlyaimedevaluatecurrentepidemiologyantimicrobialAMRmechanismstotal2407clinicalisolatesstudiedstudyperiodgraduallybecomepredominant55%36%CLSI-guidedepidemiologicalcut-offvalueECVsetbreakpointszone-diameter151122%approximately60%40%zero15%keyfactor63MDaconjugativemiddle-rangeplasmidharboringfactorsfindingsshowespecially2014increasethreeeffectiveantibioticsspreadgenesamongdrivenhorizontalratherdirectlineageIncreasingtrendantibioticShigellaBangladesh:plasmid-mediatedmphA

Similar Articles

Cited By

No available data.