Skeletal muscle proteins involved in fatty acid transport influence fatty acid oxidation rates observed during exercise.

Ed Maunder, Jeffrey A Rothschild, Andreas M Fritzen, Andreas B Jordy, Bente Kiens, Matthew J Brick, Warren B Leigh, Wee-Leong Chang, Andrew E Kilding
Author Information
  1. Ed Maunder: Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand. ed.maunder@aut.ac.nz. ORCID
  2. Jeffrey A Rothschild: Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand. ORCID
  3. Andreas M Fritzen: The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark. ORCID
  4. Andreas B Jordy: The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark. ORCID
  5. Bente Kiens: The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark. ORCID
  6. Matthew J Brick: Orthosports North Harbour, AUT Millennium, Auckland, New Zealand. ORCID
  7. Warren B Leigh: Orthosports North Harbour, AUT Millennium, Auckland, New Zealand. ORCID
  8. Wee-Leong Chang: Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand. ORCID
  9. Andrew E Kilding: Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand. ORCID

Abstract

Several proteins are implicated in transmembrane fatty acid transport. The purpose of this study was to quantify the variation in fatty acid oxidation rates during exercise explained by skeletal muscle proteins involved in fatty acid transport. Seventeen endurance-trained males underwent a (i) fasted, incremental cycling test to estimate peak whole-body fatty acid oxidation rate (PFO), (ii) resting vastus lateralis microbiopsy, and (iii) 2 h of fed-state, moderate-intensity cycling to estimate whole-body fatty acid oxidation during fed-state exercise (FO). Bivariate correlations and stepwise linear regression models of PFO and FO during 0-30 min (early FO) and 90-120 min (late FO) of continuous cycling were constructed using muscle data. To assess the causal role of transmembrane fatty acid transport in fatty acid oxidation rates during exercise, we measured fatty acid oxidation during in vivo exercise and ex vivo contractions in wild-type and CD36 knock-out mice. We observed a novel, positive association between vastus lateralis FATP1 and PFO and replicated work reporting a positive association between FABPpm and PFO. The stepwise linear regression model of PFO retained CD36, FATP1, FATP4, and FABPpm, explaining ~87% of the variation. Models of early and late FO explained ~61 and ~65% of the variation, respectively. FATP1 and FATP4 emerged as contributors to models of PFO and FO. Mice lacking CD36 had impaired whole-body and muscle fatty acid oxidation during exercise and muscle contractions, respectively. These data suggest that substantial variation in fatty acid oxidation rates during exercise can be explained by skeletal muscle proteins involved in fatty acid transport.

Keywords

References

  1. Trends Endocrinol Metab. 2018 Jan;29(1):18-30 [PMID: 29221849]
  2. Eur J Appl Physiol. 2006 Nov;98(5):497-506 [PMID: 17006714]
  3. Med Sci Sports Exerc. 2000 Oct;32(10):1777-82 [PMID: 11039652]
  4. J Appl Physiol (1985). 2020 Feb 1;128(2):379-389 [PMID: 31917629]
  5. Proc Nutr Soc. 2004 May;63(2):323-30 [PMID: 15294050]
  6. Scand J Med Sci Sports. 2006 Jun;16(3):209-14 [PMID: 16643200]
  7. Med Sci Sports Exerc. 2008 Mar;40(3):495-502 [PMID: 18379212]
  8. PLoS One. 2014 May 23;9(5):e98109 [PMID: 24858472]
  9. J Biol Chem. 2009 Jun 12;284(24):16522-16530 [PMID: 19380575]
  10. PLoS One. 2012;7(9):e45087 [PMID: 23024797]
  11. PLoS One. 2012;7(1):e29391 [PMID: 22235293]
  12. Pflugers Arch. 2007 Jul;454(4):635-47 [PMID: 17333244]
  13. FEBS Lett. 2009 Jul 7;583(13):2294-300 [PMID: 19527715]
  14. J Physiol. 2008 Dec 1;586(23):5819-31 [PMID: 18845612]
  15. Diabetologia. 2011 Jun;54(6):1457-67 [PMID: 21442160]
  16. Acta Physiol (Oxf). 2012 May;205(1):71-81 [PMID: 22463611]
  17. J Biol Chem. 2012 Jul 6;287(28):23502-16 [PMID: 22584574]
  18. Nat Metab. 2020 Sep;2(9):817-828 [PMID: 32747792]
  19. Physiol Rep. 2021 May;9(9):e14849 [PMID: 33977674]
  20. Diabetes. 2013 May;62(5):1490-9 [PMID: 23349504]
  21. J Physiol. 2013 Sep 15;591(18):4415-26 [PMID: 22890711]
  22. Am J Physiol Endocrinol Metab. 2002 Mar;282(3):E593-600 [PMID: 11832362]
  23. Eur J Appl Physiol. 2022 Jan;122(1):93-102 [PMID: 34562114]
  24. Int J Sports Med. 2005 Feb;26 Suppl 1:S28-37 [PMID: 15702454]
  25. Am J Physiol Endocrinol Metab. 2010 Aug;299(2):E180-8 [PMID: 20484014]
  26. J Lipid Res. 1999 Jun;40(6):1007-16 [PMID: 10357832]
  27. Am J Physiol Endocrinol Metab. 2007 Jun;292(6):E1740-9 [PMID: 17264223]
  28. J Physiol. 2015 Nov 1;593(21):4765-80 [PMID: 26359931]
  29. Obes Rev. 2011 Oct;12(10):852-8 [PMID: 21951332]
  30. J Biol Chem. 1999 Sep 17;274(38):26761-6 [PMID: 10480880]
  31. Eur Respir J. 2005 Mar;25(3):431-40 [PMID: 15738285]
  32. Med Sci Sports Exerc. 2002 Jan;34(1):92-7 [PMID: 11782653]
  33. Eur J Appl Physiol. 2022 Aug;122(8):1773-1795 [PMID: 35362801]
  34. Front Physiol. 2018 May 23;9:599 [PMID: 29875697]
  35. Am J Physiol Endocrinol Metab. 2012 Jan 15;302(2):E183-9 [PMID: 22028411]
  36. Exp Physiol. 2021 May;106(5):1208-1223 [PMID: 33675111]
  37. J Physiol. 2012 Mar 1;590(5):1059-68 [PMID: 22271865]
  38. Physiol Rev. 2010 Jan;90(1):367-417 [PMID: 20086080]
  39. J Appl Physiol (1985). 2015 Jun 1;118(11):1415-22 [PMID: 25814634]
  40. Sports Med. 2022 Nov;52(11):2775-2795 [PMID: 35829994]
  41. Appl Physiol Nutr Metab. 2019 Aug;44(8):805-813 [PMID: 30702924]
  42. J Biol Chem. 1999 Jul 2;274(27):19055-62 [PMID: 10383407]
  43. Mitochondrion. 2019 May;46:73-90 [PMID: 29551309]
  44. Physiol Rev. 2006 Jan;86(1):205-43 [PMID: 16371598]
  45. Med Sci Sports Exerc. 2005 Mar;37(3):426-32 [PMID: 15741841]
  46. J Biol Chem. 2004 Jan 9;279(2):1070-9 [PMID: 14573616]
  47. Scand J Med Sci Sports. 2018 Dec;28(12):2494-2504 [PMID: 30218613]

MeSH Term

Male
Mice
Animals
Fatty Acid Transport Proteins
Muscle Proteins
Muscle, Skeletal
CD36 Antigens
Fatty Acids
Oxidation-Reduction

Chemicals

Fatty Acid Transport Proteins
Muscle Proteins
CD36 Antigens
Fatty Acids

Word Cloud

Created with Highcharts 10.0.0fattyacidoxidationexercisemusclePFOFOtransportproteinsvariationratesexplainedinvolvedcyclingwhole-bodyCD36FATP1transmembraneskeletalestimatevastuslateralisfed-statestepwiselinearregressionmodelsearlylatedatavivocontractionsobservedpositiveassociationFABPpmFATP4respectivelySeveralimplicatedpurposestudyquantifySeventeenendurance-trainedmalesunderwentfastedincrementaltestpeakrateiirestingmicrobiopsyiii2hmoderate-intensityBivariatecorrelations0-30min90-120min continuousconstructedusingassesscausalrolemeasuredexwild-typeknock-outmicenovelreplicatedworkreportingmodelretainedexplaining~87%Models~61~65%emergedcontributorsMicelackingimpairedsuggestsubstantialcanSkeletalinfluenceCyclingFatmetabolismMuscleTransporters

Similar Articles

Cited By