Using neuronal models to capture burst-and-glide motion and leadership in fish.

Linnéa Gyllingberg, Alex Szorkovszky, David J T Sumpter
Author Information
  1. Linnéa Gyllingberg: Department of Mathematics, Uppsala University, Uppsala, Sweden. ORCID
  2. Alex Szorkovszky: RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway.
  3. David J T Sumpter: Department of Information Technology, Uppsala University, Uppsala, Sweden. ORCID

Abstract

While mathematical models, in particular self-propelled particle models, capture many properties of large fish schools, they do not always capture the interactions of smaller shoals. Nor do these models tend to account for the use of intermittent locomotion, often referred to as burst-and-glide, by many species. In this paper, we propose a model of social burst-and-glide motion by combining a well-studied model of neuronal dynamics, the FitzHugh-Nagumo model, with a model of fish motion. We first show that our model can capture the motion of a single fish swimming down a channel. Extending to a two-fish model, where visual stimulus of a neighbour affects the internal burst or glide state of the fish, we observe a rich set of dynamics found in many species. These include: leader-follower behaviour; periodic changes in leadership; apparently random (i.e. chaotic) leadership change; and tit-for-tat turn taking. Moreover, unlike previous studies where a randomness is required for leadership switching to occur, we show that this can instead be the result of deterministic interactions. We give several empirically testable predictions for how bursting fish interact and discuss our results in light of recently established correlations between fish locomotion and brain activity.

Keywords

References

  1. Zebrafish. 2013 Mar;10(1):70-86 [PMID: 23590400]
  2. Curr Biol. 2013 Sep 9;23(17):R709-11 [PMID: 24028946]
  3. Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19609-14 [PMID: 24218585]
  4. Proc Biol Sci. 2018 Nov 14;285(1891): [PMID: 30429304]
  5. Proc Math Phys Eng Sci. 2014 Apr 8;470(2164):20130535 [PMID: 24711718]
  6. Cell. 2016 Nov 3;167(4):947-960.e20 [PMID: 27814522]
  7. J R Soc Interface. 2021 Mar;18(176):20200925 [PMID: 33784885]
  8. Mov Ecol. 2014 Oct 25;2(1):22 [PMID: 25709831]
  9. J Neurophysiol. 2012 Aug 1;108(3):925-34 [PMID: 22572943]
  10. Trends Ecol Evol. 1995 Dec;10(12):480-5 [PMID: 21237112]
  11. PLoS One. 2012;7(8):e43747 [PMID: 22952753]
  12. J Physiol. 1952 Aug;117(4):500-44 [PMID: 12991237]
  13. J Exp Biol. 1982 Apr;97:169-78 [PMID: 7086338]
  14. J Theor Biol. 2011 Aug 21;283(1):145-51 [PMID: 21620861]
  15. Nat Commun. 2017 Nov 15;8(1):1504 [PMID: 29138413]
  16. C R Biol. 2003 Sep;326(9):787-840 [PMID: 14694754]
  17. J Theor Biol. 2002 Sep 7;218(1):1-11 [PMID: 12297066]
  18. Nature. 1987 Jan 29-Feb 4;325(6103):433-5 [PMID: 3808044]
  19. Curr Biol. 2018 Nov 19;28(22):3523-3532.e4 [PMID: 30393036]
  20. Sci Adv. 2020 Dec 2;6(49): [PMID: 33268362]
  21. PLoS Comput Biol. 2013;9(2):e1002915 [PMID: 23468605]
  22. Elife. 2016 Mar 22;5:e12741 [PMID: 27003593]
  23. Phys Rev Lett. 1995 Aug 7;75(6):1226-1229 [PMID: 10060237]
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011901 [PMID: 23005446]
  25. J Exp Biol. 2016 Oct 1;219(Pt 19):2971-2983 [PMID: 27707862]
  26. Curr Biol. 2009 Feb 10;19(3):248-52 [PMID: 19185497]
  27. Phys Rev Lett. 2013 Jun 28;110(26):268104 [PMID: 23848927]
  28. Sci Am. 1982 Jun;246(6):114-23 [PMID: 7201674]
  29. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8392-7 [PMID: 24912159]
  30. J Neurosci. 2023 Feb 8;43(6):936-948 [PMID: 36517242]
  31. Phys Ther. 2008 Sep;88(9):1022-33 [PMID: 18635672]
  32. Proc Biol Sci. 2017 Aug 30;284(1861): [PMID: 28855361]
  33. Front Syst Neurosci. 2021 Jan 20;14:591210 [PMID: 33551759]
  34. Biophys J. 1961 Jul;1(6):445-66 [PMID: 19431309]
  35. PLoS Comput Biol. 2018 Jan 11;14(1):e1005933 [PMID: 29324853]
  36. Commun Biol. 2021 Jan 14;4(1):40 [PMID: 33446863]
  37. Phys Rev Lett. 2004 Jan 16;92(2):025702 [PMID: 14753946]
  38. R Soc Open Sci. 2017 Apr 26;4(4):161056 [PMID: 28484622]
  39. PLoS Comput Biol. 2022 Mar 2;18(3):e1009437 [PMID: 35235565]
  40. Proc Biol Sci. 2018 Apr 25;285(1877): [PMID: 29695447]
  41. J Comput Neurosci. 1994 Jun;1(1-2):69-87 [PMID: 8792226]
  42. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18726-31 [PMID: 22065759]
  43. PLoS One. 2012;7(5):e36606 [PMID: 22567168]
  44. J R Soc Interface. 2009 Nov 6;6(40):1065-74 [PMID: 19324679]
  45. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18720-5 [PMID: 21795604]
  46. Science. 1985 Apr 12;228(4696):143-9 [PMID: 3975635]
  47. J Theor Biol. 1974 Nov;48(1):215-29 [PMID: 4456041]
  48. PLoS Comput Biol. 2012;8(9):e1002678 [PMID: 23028277]
  49. J Exp Biol. 2007 Jun;210(Pt 12):2181-91 [PMID: 17562892]
  50. Neuron. 2018 Nov 21;100(4):876-890.e5 [PMID: 30473013]
  51. Proc Biol Sci. 2020 Oct 28;287(1937):20200568 [PMID: 33109007]
  52. PLoS Comput Biol. 2014 Dec 18;10(12):e1003960 [PMID: 25521109]
  53. Biol Cybern. 2006 Dec;95(6):589-605 [PMID: 17123097]

MeSH Term

Animals
Leadership
Fishes
Social Behavior
Swimming
Locomotion

Word Cloud

Created with Highcharts 10.0.0fishmodelmodelscapturemotiondynamicsleadershipmanyburst-and-glideneuronalbehaviourinteractionslocomotionspeciesshowcanswimmingmathematicalparticularself-propelledparticlepropertieslargeschoolsalwayssmallershoalstendaccountuseintermittentoftenreferredpaperproposesocialcombiningwell-studiedFitzHugh-NagumofirstsinglechannelExtendingtwo-fishvisualstimulusneighbouraffectsinternalburstglidestateobserverichsetfoundinclude:leader-followerperiodicchangesapparentlyrandomiechaoticchangetit-for-tatturntakingMoreoverunlikepreviousstudiesrandomnessrequiredswitchingoccurinsteadresultdeterministicgiveseveralempiricallytestablepredictionsburstinginteractdiscussresultslightrecentlyestablishedcorrelationsbrainactivityUsingcollectivedynamicalsystems

Similar Articles

Cited By