Longitudinal changes in hippocampal texture from healthy aging to Alzheimer's disease.

Alfie Wearn, Lars Lau Raket, D Louis Collins, R Nathan Spreng, Alzheimer’s Disease Neuroimaging Initiative
Author Information
  1. Alfie Wearn: Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4. ORCID
  2. Lars Lau Raket: Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund SE-221 00, Sweden. ORCID
  3. D Louis Collins: Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4.
  4. R Nathan Spreng: Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada H3A 2B4. ORCID

Abstract

Early detection of Alzheimer's disease is essential to develop preventive treatment strategies. Detectible change in brain volume emerges relatively late in the pathogenic progression of disease, but microstructural changes caused by early neuropathology may cause subtle changes in the MR signal, quantifiable using texture analysis. Texture analysis quantifies spatial patterns in an image, such as smoothness, randomness and heterogeneity. We investigated whether the MRI texture of the hippocampus, an early site of Alzheimer's disease pathology, is sensitive to changes in brain microstructure before the onset of cognitive impairment. We also explored the longitudinal trajectories of hippocampal texture across the Alzheimer's continuum in relation to hippocampal volume and other biomarkers. Finally, we assessed the ability of texture to predict future cognitive decline, over and above hippocampal volume. Data were acquired from the Alzheimer's Disease Neuroimaging Initiative. Texture was calculated for bilateral hippocampi on 3T T-weighted MRI scans. Two hundred and ninety-three texture features were reduced to five principal components that described 88% of total variance within cognitively unimpaired participants. We assessed cross-sectional differences in these texture components and hippocampal volume between four diagnostic groups: cognitively unimpaired amyloid-β ( = 406); cognitively unimpaired amyloid-β ( = 213); mild cognitive impairment amyloid-β ( = 347); and Alzheimer's disease dementia amyloid-β ( = 202). To assess longitudinal texture change across the Alzheimer's continuum, we used a multivariate mixed-effects spline model to calculate a 'disease time' for all timepoints based on amyloid PET and cognitive scores. This was used as a scale on which to compare the trajectories of biomarkers, including volume and texture of the hippocampus. The trajectories were modelled in a subset of the data: cognitively unimpaired amyloid-β ( = 345); cognitively unimpaired amyloid-β ( = 173); mild cognitive impairment amyloid-β ( = 301); and Alzheimer's disease dementia amyloid-β ( = 161). We identified a difference in texture component 4 at the earliest stage of Alzheimer's disease, between cognitively unimpaired amyloid-β and cognitively unimpaired amyloid-β older adults (Cohen's = 0.23, = 0.014). Differences in additional texture components and hippocampal volume emerged later in the disease continuum alongside the onset of cognitive impairment ( = 0.30-1.22, < 0.002). Longitudinal modelling of the texture trajectories revealed that, while most elements of texture developed over the course of the disease, noise reduced sensitivity for tracking individual textural change over time. Critically, however, texture provided additional information than was provided by volume alone to more accurately predict future cognitive change ( = 0.32-0.63, < 0.0001). Our results support the use of texture as a measure of brain health, sensitive to Alzheimer's disease pathology, at a time when therapeutic intervention may be most effective.

Keywords

References

  1. Transl Psychiatry. 2021 Nov 13;11(1):585 [PMID: 34775468]
  2. Hippocampus. 2009 Nov;19(11):1055-64 [PMID: 19309039]
  3. J Thorac Imaging. 2018 Jan;33(1):26-34 [PMID: 28346329]
  4. Neuroscience. 2015 Nov 19;309:29-50 [PMID: 26306871]
  5. Alzheimers Dement. 2016 Mar;12(3):292-323 [PMID: 27012484]
  6. Neuroimage Clin. 2020;25:102121 [PMID: 31931400]
  7. Neuroimage. 2012 Aug 15;62(2):782-90 [PMID: 21979382]
  8. Front Neuroinform. 2021 Aug 13;15:689675 [PMID: 34483871]
  9. Hum Brain Mapp. 2016 Mar;37(3):1148-61 [PMID: 26686837]
  10. Alzheimers Dement (Amst). 2018 Nov 02;10:755-763 [PMID: 30480081]
  11. Brain. 2016 Apr;139(Pt 4):1226-36 [PMID: 26936941]
  12. Phys Med Biol. 2019 Aug 21;64(16):165011 [PMID: 31272093]
  13. Sci Rep. 2017 Jun 22;7(1):4041 [PMID: 28642480]
  14. Ann Neurol. 2001 Jun;49(6):770-5 [PMID: 11409429]
  15. Sci Rep. 2022 Jan 11;12(1):526 [PMID: 35017548]
  16. JAMA Neurol. 2018 Aug 1;75(8):970-979 [PMID: 29710225]
  17. Alzheimers Dement. 2018 Nov;14(11):1470-1481 [PMID: 29499171]
  18. J Appl Clin Med Phys. 2020 Jan;21(1):179-190 [PMID: 31880401]
  19. Ther Adv Neurol Disord. 2021 Jul 15;14:17562864211029551 [PMID: 34349837]
  20. J Psychiatry Neurosci. 2019 Jun 24;45(1):7-14 [PMID: 31228173]
  21. Front Aging Neurosci. 2018 Sep 25;10:290 [PMID: 30319396]
  22. Sci Rep. 2021 Mar 26;11(1):6954 [PMID: 33772041]
  23. Acta Neuropathol. 1991;82(4):239-59 [PMID: 1759558]
  24. Alzheimers Dement. 2015 Jan;11(1):1-15.e1-4 [PMID: 25443857]
  25. Magn Reson Imaging. 2004 Jan;22(1):81-91 [PMID: 14972397]
  26. Front Big Data. 2020 Aug 12;3:24 [PMID: 33693397]
  27. Neuroimage. 2011 Jan 15;54(2):940-54 [PMID: 20851199]
  28. Alzheimers Res Ther. 2020 Mar 4;12(1):22 [PMID: 32131891]
  29. Br J Radiol. 2017 Feb;90(1070):20160642 [PMID: 27885836]
  30. J Magn Reson Imaging. 2010 Jan;31(1):192-203 [PMID: 20027588]
  31. Acad Radiol. 2020 Dec;27(12):1774-1783 [PMID: 32057617]
  32. Lancet Neurol. 2013 Feb;12(2):207-16 [PMID: 23332364]
  33. Magn Reson Med. 1989 Sep;11(3):337-48 [PMID: 2779421]
  34. Korean J Radiol. 2020 Dec;21(12):1345-1354 [PMID: 33169553]
  35. Magn Reson Imaging. 1993;11(6):873-87 [PMID: 8371643]
  36. Hum Brain Mapp. 2015 Dec;36(12):4758-70 [PMID: 26454259]
  37. Metab Brain Dis. 2018 Dec;33(6):1899-1909 [PMID: 30178281]
  38. Neuroimage Clin. 2012 Oct 17;1(1):141-52 [PMID: 24179747]
  39. Alzheimers Res Ther. 2020 Sep 10;12(1):105 [PMID: 32912337]
  40. Brain Imaging Behav. 2012 Mar;6(1):61-9 [PMID: 22101754]
  41. Hum Brain Mapp. 2019 Aug 15;40(12):3431-3451 [PMID: 31034738]
  42. Radiology. 2006 Sep;240(3):811-20 [PMID: 16868279]
  43. Brain. 2021 Feb 12;144(1):310-324 [PMID: 33279949]
  44. Stat Med. 2021 Jun 30;40(14):3251-3266 [PMID: 33853199]
  45. Sci Bull (Beijing). 2020 Jul 15;65(13):1103-1113 [PMID: 36659162]
  46. Neuroimage. 2012 Feb 15;59(4):3736-47 [PMID: 22094645]
  47. Acta Radiol. 2015 Jan;56(1):97-104 [PMID: 24413223]

Grants

  1. R01 AG068563/NIA NIH HHS
  2. U01 AG024904/NIA NIH HHS

Word Cloud

Created with Highcharts 10.0.0texture=diseaseAlzheimer'samyloid-βvolumecognitivecognitivelyunimpairedhippocampal0changechangesimpairmenttrajectoriesbrainanalysisMRIlongitudinalcontinuumcomponentsearlymayTexturehippocampuspathologysensitiveonsetacrossbiomarkersassessedpredictfuturereducedmilddementiausedadditional<LongitudinalmodellingtimeprovidedEarlydetectionessentialdeveloppreventivetreatmentstrategiesDetectibleemergesrelativelylatepathogenicprogressionmicrostructuralcausedneuropathologycausesubtleMRsignalquantifiableusingquantifiesspatialpatternsimagesmoothnessrandomnessheterogeneityinvestigatedwhethersitemicrostructurealsoexploredrelationFinallyabilitydeclineDataacquiredDiseaseNeuroimagingInitiativecalculatedbilateralhippocampi3TT-weightedscansTwohundredninety-threefeaturesfiveprincipaldescribed88%totalvariancewithinparticipantscross-sectionaldifferencesfourdiagnosticgroups:406213347202assessmultivariatemixed-effectssplinemodelcalculate'diseasetime'timepointsbasedamyloidPETscoresscalecompareincludingmodelledsubsetdata:345173301161identifieddifferencecomponent4earlieststageolderadultsCohen's23014Differencesemergedlateralongside30-122002revealedelementsdevelopedcoursenoisesensitivitytrackingindividualtexturalCriticallyhoweverinformationaloneaccurately32-0630001resultssupportusemeasurehealththerapeuticinterventioneffectivehealthyagingAlzheimer’sradiomics

Similar Articles

Cited By