Reimagining the Value of Brachial-Ankle Pulse Wave Velocity as a Biomarker of Cardiovascular Disease Risk-A Call to Action on Behalf of VascAgeNet.

Keeron Stone, Dave Veerasingam, Michelle L Meyer, Kevin S Heffernan, Simon Higgins, Rosa Maria Bruno, Celia Alvarez Bueno, Marcus Döerr, Arno Schmidt-Trucksäss, Dimitrios Terentes-Printzios, Jūlija Voicehovska, Rachel E Climie, Chloe Park, Giacomo Pucci, Martin Bahls, Lee Stoner, Network for Research in Vascular Ageing (VascAgeNet)
Author Information
  1. Keeron Stone: Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, Wales, United Kingdom (K.S.). ORCID
  2. Dave Veerasingam: Cardiothoracic Surgery, Galway University Hospital, Ireland (D.V.). ORCID
  3. Michelle L Meyer: Department of Emergency Medicine, University of North Carolina at Chapel Hill (M.L.M.).
  4. Kevin S Heffernan: Department of Exercise Science, Syracuse University (K.S.H.).
  5. Simon Higgins: Department of Exercise and Sport Science, University of North Carolina, Chapel Hill (S.H., L.S.).
  6. Rosa Maria Bruno: Université Paris Cité, Inserm, PARCC, France (R.M.B.). ORCID
  7. Celia Alvarez Bueno: Health and Social Research Center, Universidad de Castilla La Mancha, Cuenca, Spain (C.A.B.).
  8. Marcus Döerr: Department of Internal Medicine B, University Medicine Greifswald, Germany (M.D., M.B.). ORCID
  9. Arno Schmidt-Trucksäss: Department of Sport, Exercise, and Health (A.S.-T.), University of Basel, Switzerland. ORCID
  10. Dimitrios Terentes-Printzios: First Department of Cardiology, Athens Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Greece (D.T.-P.). ORCID
  11. Jūlija Voicehovska: Internal Diseases Department, Riga Stradins University, Latvia (J.V.). ORCID
  12. Rachel E Climie: Menzies Institute for Medical Research, University of Tasmania (R.E.C.). ORCID
  13. Chloe Park: MRC Unit for Lifelong Health and Ageing at UCL, Institute of Cardiovascular Science, London, United Kingdom (C.P.).
  14. Giacomo Pucci: Department of Medicine, University of Perugia, Unit of Internal Medicine, "Santa Maria" Terni Hospital, Italy (G.P.). ORCID
  15. Martin Bahls: German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Germany (M.D., M.B.). ORCID
  16. Lee Stoner: Department of Exercise and Sport Science, University of North Carolina, Chapel Hill (S.H., L.S.). ORCID

Abstract

This review critiques the literature supporting clinical assessment and management of cardiovascular disease and cardiovascular disease risk stratification with brachial-ankle pulse wave velocity (baPWV). First, we outline what baPWV actually measures-arterial stiffness of both large central elastic arteries and medium-sized muscular peripheral arteries of the lower limb. Second, we argue that baPWV is not a surrogate for carotid-femoral pulse wave velocity. While both measures are dependent on the properties of the aorta, baPWV is also strongly dependent on the muscular arteries of the lower extremities. Increased lower-extremity arterial stiffness amplifies and hastens wave reflections at the level of the aorta, widens pulse pressure, increases afterload, and reduces coronary perfusion. Third, we used an established evaluation framework to identify the value of baPWV as an independent vascular biomarker. There is sufficient evidence to support (1) proof of concept; (2) prospective validation; (3) incremental value; and (4) clinical utility. However, there is limited or no evidence to support (5) clinical outcomes; (6) cost-effectiveness; (8) methodological consensus; or (9) reference values. Fourth, we address future research requirements. The majority of the evaluation criteria, (1) proof of concept, (2) prospective validation, (3) incremental value, (4) clinical utility and (9) reference values, can be supported using existing cohort datasets, whereas the (5) clinical outcomes and (6) cost-effectiveness criteria require prospective investigation. The (8) methodological consensus criteria will require an expert consensus statement. Finally, we finish this review by providing an example of a future clinical practice model.

Keywords

References

  1. J Hypertens. 2013 Mar;31(3):477-83; discussion 483 [PMID: 23615210]
  2. Arterioscler Thromb Vasc Biol. 2015 Jan;35(1):243-52 [PMID: 25414255]
  3. J Am Coll Cardiol. 2019 Sep 3;74(9):1237-1263 [PMID: 31466622]
  4. J Am Coll Cardiol. 2005 Nov 1;46(9):1753-60 [PMID: 16256881]
  5. Hypertension. 2006 Apr;47(4):785-90 [PMID: 16505196]
  6. J Am Heart Assoc. 2018 Jul 12;7(14): [PMID: 30005558]
  7. Proc IEEE Inst Electr Electron Eng. 2022 Mar 11;110(3):355-381 [PMID: 35356509]
  8. Physiol Rev. 2017 Oct 1;97(4):1555-1617 [PMID: 28954852]
  9. Am J Prev Med. 2018 Jan;54(1S1):S4-S10 [PMID: 29254525]
  10. Vasc Health Risk Manag. 2018 Apr 03;14:41-62 [PMID: 29662315]
  11. Hypertension. 2012 Aug;60(2):556-62 [PMID: 22733468]
  12. Atherosclerosis. 2022 Jan;340:53-60 [PMID: 34799100]
  13. Hypertension. 2004 Jun;43(6):1239-45 [PMID: 15123572]
  14. Cardiovasc Diabetol. 2021 Jan 4;20(1):4 [PMID: 33397376]
  15. J Hypertens. 2018 Mar;36(3):528-536 [PMID: 29045343]
  16. JAMA. 2008 Jul 9;300(2):197-208 [PMID: 18612117]
  17. Circulation. 2006 Mar 7;113(9):1213-25 [PMID: 16476843]
  18. Pulse (Basel). 2022 Nov 22;10(1-4):1-18 [PMID: 36660436]
  19. Hypertension. 2006 Feb;47(2):180-8 [PMID: 16380535]
  20. Eur Heart J Digit Health. 2021 Dec 29;2(4):676-690 [PMID: 35316972]
  21. Heart Fail Rev. 2015 May;20(3):291-303 [PMID: 25716909]
  22. Arterioscler Thromb Vasc Biol. 2020 May;40(5):1028-1033 [PMID: 32188277]
  23. Hypertens Res. 2013 Aug;36(8):718-24 [PMID: 23575382]
  24. Heart Vessels. 2015 May;30(3):338-46 [PMID: 24566589]
  25. Hypertension. 2021 Feb;77(2):650-661 [PMID: 33342236]
  26. PLoS One. 2016 Sep 29;11(9):e0163844 [PMID: 27685325]
  27. PLoS One. 2012;7(7):e41369 [PMID: 22829944]
  28. J Clin Hypertens (Greenwich). 2015 Jul;17(7):503-13 [PMID: 26010834]
  29. Circulation. 1983 Jul;68(1):50-8 [PMID: 6851054]
  30. Circulation. 2009 May 5;119(17):2408-16 [PMID: 19364974]
  31. J Atheroscler Thromb. 2020 Jul 1;27(7):621-636 [PMID: 32448827]
  32. Hypertens Res. 2021 Sep;44(9):1175-1185 [PMID: 34127818]
  33. Eur J Prev Cardiol. 2023 Aug 21;30(11):1101-1117 [PMID: 36738307]
  34. Atherosclerosis. 2015 Aug;241(2):507-32 [PMID: 26117398]
  35. Eur J Epidemiol. 2014 May;29(5):371-82 [PMID: 24840228]
  36. Hypertens Res. 2003 Oct;26(10):801-6 [PMID: 14621183]
  37. Atherosclerosis. 2021 Jan;317:59-66 [PMID: 33213858]
  38. Atherosclerosis. 2023 May;372:41-47 [PMID: 37023507]
  39. Circulation. 2012 Dec 11;126(24):2890-909 [PMID: 23159553]
  40. J Cardiol. 2014 Sep;64(3):179-84 [PMID: 24556367]
  41. Circ J. 2005 Jul;69(7):815-22 [PMID: 15988107]
  42. Pulse (Basel). 2015 Sep;3(2):106-13 [PMID: 26587459]
  43. J Hum Hypertens. 2008 Jan;22(1):24-31 [PMID: 17597797]
  44. Int J Environ Res Public Health. 2021 Sep 07;18(18): [PMID: 34574374]
  45. J Hypertens. 2021 Jul 1;39(7):1370-1377 [PMID: 33560059]
  46. Atherosclerosis. 2018 Jan;268:127-137 [PMID: 29216483]
  47. PLoS One. 2022 Apr 27;17(4):e0267614 [PMID: 35476644]
  48. Am J Hypertens. 2016 Apr;29(4):470-5 [PMID: 26232036]
  49. Cardiovasc Ther. 2020 Feb 25;2020:7056184 [PMID: 32190121]
  50. J Am Coll Cardiol. 2013 May 7;61(18):1874-83 [PMID: 23500307]
  51. J Hypertens. 2009 Oct;27(10):2022-7 [PMID: 19550355]
  52. Eur Heart J. 2010 Aug;31(15):1865-71 [PMID: 20197424]
  53. Coron Artery Dis. 2020 Mar;31(2):157-165 [PMID: 31821193]
  54. J Hum Hypertens. 2005 May;19(5):401-6 [PMID: 15729378]
  55. Hypertens Res. 2002 May;25(3):359-64 [PMID: 12135313]
  56. J Atheroscler Thromb. 2015;22(10):1040-50 [PMID: 26235347]
  57. Hypertension. 2017 Jun;69(6):1045-1052 [PMID: 28438905]
  58. Heart Vessels. 2020 Dec;35(12):1699-1708 [PMID: 32591893]
  59. J Clin Med. 2021 Jul 26;10(15): [PMID: 34362075]
  60. JAMA. 2018 Jul 10;320(2):184-196 [PMID: 29998343]
  61. Hypertens Res. 2019 Sep;42(9):1235-1481 [PMID: 31375757]
  62. J Hypertens. 2023 Jun 21;: [PMID: 37345492]
  63. J Hypertens. 2014 Apr;32(4):881-9 [PMID: 24609216]
  64. Circulation. 2010 Feb 2;121(4):505-11 [PMID: 20083680]
  65. Pulse (Basel). 2016 Apr;3(3-4):195-204 [PMID: 27195241]
  66. J Am Heart Assoc. 2017 Feb 20;6(2): [PMID: 28219916]
  67. Hypertension. 2020 Nov;76(5):1616-1624 [PMID: 32895017]

Grants

  1. R01 AG061088/NIA NIH HHS
  2. R01 HL157187/NHLBI NIH HHS
  3. R01 HL162805/NHLBI NIH HHS

MeSH Term

Humans
Cardiovascular Diseases
Ankle Brachial Index
Pulse Wave Analysis
Ankle
Biomarkers
Vascular Stiffness
Risk Factors

Chemicals

Biomarkers

Word Cloud

Created with Highcharts 10.0.0clinicalbaPWVpulsewavecardiovasculardiseasevelocitystiffnessarteriesvalueprospectiveconsensuscriteriareviewriskmuscularlowerdependentaortaarterialevaluationvascularevidencesupport1proofconcept2validation3incremental4utility5outcomes6cost-effectiveness8methodological9referencevaluesfuturerequirecritiquesliteraturesupportingassessmentmanagementstratificationbrachial-ankleFirstoutlineactuallymeasures-arteriallargecentralelasticmedium-sizedperipherallimbSecondarguesurrogatecarotid-femoralmeasurespropertiesalsostronglyextremitiesIncreasedlower-extremityamplifieshastensreflectionslevelwidenspressureincreasesafterloadreducescoronaryperfusionThirdusedestablishedframeworkidentifyindependentbiomarkersufficientHoweverlimitedFourthaddressresearchrequirementsmajoritycansupportedusingexistingcohortdatasetswhereasinvestigationwillexpertstatementFinallyfinishprovidingexamplepracticemodelReimaginingValueBrachial-AnklePulseWaveVelocityBiomarkerCardiovascularDiseaseRisk-ACallActionBehalfVascAgeNetbiomarkersaging

Similar Articles

Cited By