Exploration of spatiotemporal heterogeneity and socio-demographic determinants on COVID-19 incidence rates in Sarawak, Malaysia.

Piau Phang, Jane Labadin, Jamaludin Suhaila, Saira Aslam, Helmy Hazmi
Author Information
  1. Piau Phang: Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia. pphang@unimas.my.
  2. Jane Labadin: Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia.
  3. Jamaludin Suhaila: Department of Mathematical Science, Faculty of Science, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia.
  4. Saira Aslam: Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia.
  5. Helmy Hazmi: Faculty of Medicine and Health Science, Universiti Malaysia Sarawak, Kota Samarahan, 94300, Sarawak, Malaysia.

Abstract

BACKGROUND: In Sarawak, 252 300 coronavirus disease 2019 (COVID-19) cases have been recorded with 1 619 fatalities in 2021, compared to only 1 117 cases in 2020. Since Sarawak is geographically separated from Peninsular Malaysia and half of its population resides in rural districts where medical resources are limited, the analysis of spatiotemporal heterogeneity of disease incidence rates and their relationship with socio-demographic factors are crucial in understanding the spread of the disease in Sarawak.
METHODS: The spatial dependence of district-wise incidence rates is investigated using spatial autocorrelation analysis with two orders of contiguity weights for various pandemic waves. Nine determinants are chosen from 14 covariates of socio-demographic factors via elastic net regression and recursive partitioning. The relationships between incidence rates and socio-demographic factors are examined using ordinary least squares, spatial lag and spatial error models, and geographically weighted regression.
RESULTS: In the first 8 months of 2021, COVID-19 severely affected Sarawak's central region, which was followed by the southern region in the next 2 months. In the third wave, based on second-order spatial weights, the incidence rate in a district is most strongly influenced by its neighboring districts' rate, although the variance of incidence rates is best explained by local regression coefficient estimates of socio-demographic factors in the first wave. It is discovered that the percentage of households with garbage collection facilities, population density and the proportion of male in the population are positively associated with the increase in COVID-19 incidence rates.
CONCLUSION: This research provides useful insights for the State Government and public health authorities to critically incorporate socio-demographic characteristics of local communities into evidence-based decision-making for altering disease monitoring and response plans. Policymakers can make well-informed judgments and implement targeted interventions by having an in-depth understanding of the spatial patterns and relationships between COVID-19 incidence rates and socio-demographic characteristics. This will effectively help in mitigating the spread of the disease.

Keywords

References

  1. PLoS One. 2020 Dec 23;15(12):e0242398 [PMID: 33362283]
  2. F1000Res. 2020 Nov 27;9:1379 [PMID: 35186280]
  3. Environ Plan B Urban Anal City Sci. 2023 Jun;50(5):1144-1160 [PMID: 38603206]
  4. Scientometrics. 2021;126(6):5305-5319 [PMID: 33994601]
  5. Trans GIS. 2021 Dec;25(6):2982-3001 [PMID: 34512106]
  6. Nature. 2021 Jul 21;: [PMID: 34290423]
  7. PLoS Comput Biol. 2021 May 27;17(5):e1008959 [PMID: 34043622]
  8. PLoS One. 2022 Feb 25;17(2):e0263678 [PMID: 35213571]
  9. Environ Res. 2022 Jun;209:112816 [PMID: 35093310]
  10. Virol J. 2022 Jun 16;19(1):103 [PMID: 35710544]
  11. Trans GIS. 2021 Oct;25(5):2191-2239 [PMID: 34512103]
  12. Earth Syst Environ. 2020;4(4):797-811 [PMID: 34723076]
  13. J Stat Softw. 2010;33(1):1-22 [PMID: 20808728]
  14. Int J Environ Res Public Health. 2021 Sep 18;18(18): [PMID: 34574790]
  15. Environ Sci Pollut Res Int. 2021 Aug;28(32):43732-43746 [PMID: 33837938]
  16. Int J Environ Res Public Health. 2022 Feb 13;19(4): [PMID: 35206271]
  17. J Travel Med. 2021 Feb 23;28(2): [PMID: 32894286]
  18. Lancet Reg Health West Pac. 2021 Dec;17:100295 [PMID: 34704083]
  19. Front Public Health. 2022 Mar 04;10:836358 [PMID: 35309230]
  20. Ann Epidemiol. 2020 Dec;52:54-59.e1 [PMID: 32736059]
  21. Environ Res. 2023 Jan 1;216(Pt 3):114662 [PMID: 36374652]
  22. Sci Total Environ. 2022 Dec 1;850:158056 [PMID: 35985590]
  23. Stoch Environ Res Risk Assess. 2022;36(1):271-282 [PMID: 34421343]
  24. PLoS One. 2020 Apr 24;15(4):e0231866 [PMID: 32330167]
  25. Reg Sci Policy Prac. 2020 Dec;12(6):1063-1103 [PMID: 38607800]
  26. J Epidemiol Glob Health. 2021 Dec;11(4):326-337 [PMID: 34734378]
  27. Int J Environ Res Public Health. 2021 Nov 01;18(21): [PMID: 34770012]
  28. Tijdschr Econ Soc Geogr. 2020 Jul;111(3):482-496 [PMID: 32836489]
  29. Int J Environ Res Public Health. 2021 Feb 27;18(5): [PMID: 33673545]
  30. J Reg Sci. 2021 Sep;61(4):849-881 [PMID: 34230688]
  31. BMC Infect Dis. 2021 Aug 14;21(1):816 [PMID: 34391402]
  32. Health Informatics J. 2020 Jun;26(2):841-861 [PMID: 31195874]
  33. Int J Environ Res Public Health. 2021 Jun 18;18(12): [PMID: 34207205]
  34. Sci Total Environ. 2020 Oct 15;739:140033 [PMID: 32534320]
  35. Model Earth Syst Environ. 2021;7(3):2059-2087 [PMID: 32929411]
  36. Pan Afr Med J. 2015 Oct 10;22 Suppl 1:9 [PMID: 26779300]
  37. Emerg Infect Dis. 2003 Oct;9(10):1242-8 [PMID: 14609458]
  38. Front Public Health. 2022 Sep 20;10:957265 [PMID: 36203708]
  39. Med J Aust. 2021 Dec 13;215(11):509-510 [PMID: 34708409]
  40. Public Health Nurs. 2022 Sep;39(5):1142-1155 [PMID: 35388516]
  41. J Med Virol. 2022 Mar;94(3):1146-1153 [PMID: 34757638]
  42. Int J Environ Res Public Health. 2022 Jul 06;19(14): [PMID: 35886114]
  43. J Water Health. 2022 Jan;20(1):139-148 [PMID: 35100161]
  44. Front Public Health. 2020 May 08;8:193 [PMID: 32574293]
  45. Int J Environ Res Public Health. 2022 Jun 17;19(12): [PMID: 35742687]
  46. J Transp Geogr. 2021 May;93:103039 [PMID: 36569218]
  47. Nat Comput Sci. 2021 Jan;1(1):6-8 [PMID: 38217154]
  48. Science. 2020 May 1;368(6490):493-497 [PMID: 32213647]
  49. Infect Dis Poverty. 2020 Aug 31;9(1):124 [PMID: 32867851]
  50. Sci Total Environ. 2022 Jun 20;826:154182 [PMID: 35231530]
  51. Ethn Health. 2021 Jan;26(1):126-138 [PMID: 33126820]
  52. BMC Res Notes. 2020 Jul 13;13(1):336 [PMID: 32660556]
  53. Int J Infect Dis. 2022 Dec;125:216-226 [PMID: 36336246]
  54. Int J Disaster Risk Reduct. 2021 Jul;61:102299 [PMID: 36311646]

MeSH Term

Humans
Male
Malaysia
Socioeconomic Factors
Incidence
COVID-19
Family Characteristics

Word Cloud

Created with Highcharts 10.0.0incidenceratessocio-demographicCOVID-19spatialdiseaseSarawakfactorsregressionpopulationheterogeneitycases12021geographicallyMalaysiaanalysisspatiotemporalunderstandingspreadusingweightsdeterminantsrelationshipslagerrorweightedfirstregionwaveratelocalcharacteristicsSpatialBACKGROUND:252300coronavirus2019recorded619fatalitiescompared1172020SinceseparatedPeninsularhalfresidesruraldistrictsmedicalresourceslimitedrelationshipcrucialMETHODS:dependencedistrict-wiseinvestigatedautocorrelationtwoorderscontiguityvariouspandemicwavesNinechosen14covariatesviaelasticnetrecursivepartitioningexaminedordinaryleastsquaresmodelsRESULTS:8 monthsseverelyaffectedSarawak'scentralfollowedsouthernnext2 monthsthirdbasedsecond-orderdistrictstronglyinfluencedneighboringdistricts'althoughvariancebestexplainedcoefficientestimatesdiscoveredpercentagehouseholdsgarbagecollectionfacilitiesdensityproportionmalepositivelyassociatedincreaseCONCLUSION:researchprovidesusefulinsightsStateGovernmentpublichealthauthoritiescriticallyincorporatecommunitiesevidence-baseddecision-makingalteringmonitoringresponseplansPolicymakerscanmakewell-informedjudgmentsimplementtargetedinterventionsin-depthpatternswilleffectivelyhelpmitigatingExplorationGeographicallySocio-demographymodelSpatiotemporal

Similar Articles

Cited By