Force generation in human blood platelets by filamentous actomyosin structures.

Anna Zelen��, Johannes Blumberg, Dimitri Probst, R��ta Gerasimait��, Gra��vydas Lukinavi��ius, Ulrich S Schwarz, Sarah K��ster
Author Information
  1. Anna Zelen��: Institute for X-Ray Physics, University of G��ttingen, G��ttingen, Germany.
  2. Johannes Blumberg: Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany.
  3. Dimitri Probst: Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany.
  4. R��ta Gerasimait��: Max Planck Institute for Multidisciplinary Sciences, G��ttingen, Germany.
  5. Gra��vydas Lukinavi��ius: Max Planck Institute for Multidisciplinary Sciences, G��ttingen, Germany.
  6. Ulrich S Schwarz: Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany. Electronic address: schwarz@thphys.uni-heidelberg.de.
  7. Sarah K��ster: Institute for X-Ray Physics, University of G��ttingen, G��ttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site G��ttingen, G��ttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of G��ttingen, G��ttingen, Germany. Electronic address: sarah.koester@uni-goettingen.de.

Abstract

Blood platelets are central elements of the blood clotting response after wounding. Upon vessel damage, they bind to the surrounding matrix and contract the forming thrombus, thus helping to restore normal blood circulation. The hemostatic function of platelets is directly connected to their mechanics and cytoskeletal organization. The reorganization of the platelet cytoskeleton during spreading occurs within minutes and leads to the formation of contractile actomyosin bundles, but it is not known if there is a direct correlation between the emerging actin structures and the force field that is exerted to the environment. In this study, we combine fluorescence imaging of the actin structures with simultaneous traction force measurements in a time-resolved manner. In addition, we image the final states with superresolution microscopy. We find that both the force fields and the cell shapes have clear geometrical patterns defined by stress fibers. Force generation is localized in a few hotspots, which appear early during spreading, and, in the mature state, anchor stress fibers in focal adhesions. Moreover, we show that, for a gel stiffness in the physiological range, force generation is a very robust mechanism and we observe no systematic dependence on the amount of added thrombin in solution or fibrinogen coverage on the substrate, suggesting that force generation after platelet activation is a threshold phenomenon that ensures reliable thrombus contraction in diverse environments.

References

  1. J Vis Exp. 2019 Oct 11;(152): [PMID: 31657796]
  2. Methods Cell Biol. 2014;120:93-116 [PMID: 24484659]
  3. Blood. 2008 May 1;111(9):4605-16 [PMID: 18230754]
  4. Arterioscler Thromb Vasc Biol. 1997 Apr;17(4):646-53 [PMID: 9108776]
  5. Nat Commun. 2015 Jun 01;6:7254 [PMID: 26028144]
  6. J Thromb Haemost. 2015 Mar;13(3):333-46 [PMID: 25510620]
  7. Nat Mater. 2011 Jan;10(1):61-6 [PMID: 21131961]
  8. Nat Mater. 2017 Feb;16(2):230-235 [PMID: 27723740]
  9. Sci Rep. 2018 Apr 3;8(1):5428 [PMID: 29615672]
  10. J Thromb Haemost. 2007 Jul;5(7):1516-29 [PMID: 17488351]
  11. J Cell Biol. 2014 Jan 20;204(2):177-85 [PMID: 24421335]
  12. F1000Res. 2020 May 27;9: [PMID: 32566134]
  13. Semin Hematol. 2006 Jan;43(1 Suppl 1):S94-100 [PMID: 16427392]
  14. Nanoscale. 2020 Nov 7;12(41):21306-21315 [PMID: 33073832]
  15. Soft Matter. 2018 Aug 21;14(31):6571-6581 [PMID: 30052252]
  16. J Cell Biol. 1992 Sep;118(6):1421-42 [PMID: 1325975]
  17. Nat Methods. 2014 Jul;11(7):731-3 [PMID: 24859753]
  18. Cell. 1995 Aug 25;82(4):643-53 [PMID: 7664343]
  19. Prog Biophys Mol Biol. 2019 Jul;144:166-176 [PMID: 29843920]
  20. J Cell Biol. 1975 Oct;67(1):72-92 [PMID: 240861]
  21. Cell Motil. 1982;2(5):445-55 [PMID: 6891618]
  22. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  23. Biosens Bioelectron. 2018 Feb 15;100:192-200 [PMID: 28915383]
  24. J Thromb Haemost. 2007 Oct;5(10):2136-45 [PMID: 17645784]
  25. Nat Methods. 2011 Apr;8(4):353-9 [PMID: 21399636]
  26. Lab Chip. 2010 Apr 21;10(8):991-8 [PMID: 20358105]
  27. J Cell Sci. 2012 Aug 15;125(Pt 16):3914-20 [PMID: 22582082]
  28. Blood Rev. 1995 Sep;9(3):143-56 [PMID: 8563516]
  29. Sci Rep. 2016 Mar 03;6:22357 [PMID: 26934830]
  30. Thromb Haemost. 2009 Aug;102(2):248-57 [PMID: 19652875]
  31. J Cell Biochem. 2013 Sep;114(9):2050-60 [PMID: 23553987]
  32. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4418-4423 [PMID: 28400519]
  33. Blood. 2007 Jan 1;109(1):130-8 [PMID: 16940416]
  34. J Biol Chem. 1996 Dec 20;271(51):32986-93 [PMID: 8955143]
  35. J Thromb Haemost. 2008 Nov;6(11):1944-52 [PMID: 18761725]
  36. Thromb Haemost. 2015 Aug 31;114(3):449-58 [PMID: 26293514]
  37. PLoS One. 2023 Feb 6;18(2):e0279336 [PMID: 36745610]

MeSH Term

Humans
Blood Platelets
Actomyosin
Actins
Cytoskeleton
Thrombosis

Chemicals

Actomyosin
Actins

Word Cloud

Created with Highcharts 10.0.0forcegenerationplateletsbloodstructuresthrombusplateletspreadingactomyosinactinstressfibersForceBloodcentralelementsclottingresponsewoundingUponvesseldamagebindsurroundingmatrixcontractformingthushelpingrestorenormalcirculationhemostaticfunctiondirectlyconnectedmechanicscytoskeletalorganizationreorganizationcytoskeletonoccurswithinminutesleadsformationcontractilebundlesknowndirectcorrelationemergingfieldexertedenvironmentstudycombinefluorescenceimagingsimultaneoustractionmeasurementstime-resolvedmanneradditionimagefinalstatessuperresolutionmicroscopyfindfieldscellshapescleargeometricalpatternsdefinedlocalizedhotspotsappearearlymaturestateanchorfocaladhesionsMoreovershowgelstiffnessphysiologicalrangerobustmechanismobservesystematicdependenceamountaddedthrombinsolutionfibrinogencoveragesubstratesuggestingactivationthresholdphenomenonensuresreliablecontractiondiverseenvironmentshumanby filamentous

Similar Articles

Cited By (1)