Learning Probabilistic Piecewise Rigid Atlases of Model Organisms via Generative Deep Networks.

Amin Nejatbakhsh, Neel Dey, Vivek Venkatachalam, Eviatar Yemini, Liam Paninski, Erdem Varol
Author Information
  1. Amin Nejatbakhsh: Departments of Neuroscience and Statistics, Columbia University, New York, USA.
  2. Neel Dey: Computer Science and Artificial Intelligence Lab, MIT, Massachusetts, USA.
  3. Vivek Venkatachalam: Department of Physics, Northeastern University, Boston, USA.
  4. Eviatar Yemini: Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, USA.
  5. Liam Paninski: Departments of Neuroscience and Statistics, Columbia University, New York, USA.
  6. Erdem Varol: Department of Computer Science and Engineering, New York University, New York, USA.

Abstract

Atlases are crucial to imaging statistics as they enable the standardization of inter-subject and inter-population analyses. While existing atlas estimation methods based on fluid/elastic/diffusion registration yield high-quality results for the human brain, these deformation models do not extend to a variety of other challenging areas of neuroscience such as the anatomy of worms and fruit flies. To this end, this work presents a general probabilistic deep network-based framework for atlas estimation and registration which can flexibly incorporate various deformation models and levels of keypoint supervision that can be applied to a wide class of model organisms. Of particular relevance, it also develops a deformable piecewise rigid atlas model which is regularized to preserve inter-observation distances between neighbors. These modeling considerations are shown to improve atlas construction and key-point alignment across a diversity of datasets with small sample sizes including neuron positions in hermaphrodites, fluorescence microscopy of male , and images of fruit fly wings. Code is accessible at https://github.com/amin-nejat/Deformable-Atlas.

References

  1. Nat Rev Neurosci. 2009 Nov;10(11):821-8 [PMID: 19826436]
  2. Front Comput Neurosci. 2014 Nov 03;8:137 [PMID: 25404913]
  3. Neuroimage. 2010 Feb 1;49(3):2457-66 [PMID: 19818860]
  4. Nat Rev Genet. 2010 Dec;11(12):855-66 [PMID: 21085204]
  5. Gigascience. 2015 May 22;4:25 [PMID: 27390931]
  6. Nat Methods. 2009 Sep;6(9):667-72 [PMID: 19684595]
  7. BMC Bioinformatics. 2022 May 28;23(1):195 [PMID: 35643434]
  8. Dev Biol. 1977 Mar;56(1):110-56 [PMID: 838129]
  9. Neuroimage. 2004;23 Suppl 1:S151-60 [PMID: 15501084]
  10. PLoS Comput Biol. 2006 Jul 21;2(7):e95 [PMID: 16848638]
  11. Cell. 2021 Jan 7;184(1):272-288.e11 [PMID: 33378642]
  12. Hum Brain Mapp. 1994;1(3):173-84 [PMID: 24578038]
  13. Development. 2014 Jun;141(12):2524-32 [PMID: 24917506]
  14. FEBS J. 2007 Nov;274(22):5782-9 [PMID: 17944943]
  15. Med Image Anal. 2008 Aug;12(4):427-441 [PMID: 18325825]
  16. Med Image Comput Comput Assist Interv. 2019 Oct;11764:658-666 [PMID: 34708224]
  17. J Comput Assist Tomogr. 1991 Jan-Feb;15(1):26-38 [PMID: 1987199]
  18. Development. 2021 Sep 15;148(18): [PMID: 34415309]
  19. Neuroimage. 2004;23 Suppl 1:S139-50 [PMID: 15501083]
  20. Annu Rev Cell Dev Biol. 2019 Oct 6;35:637-653 [PMID: 31283380]

Grants

  1. R00 MH128772/NIMH NIH HHS
  2. R01 NS126334/NINDS NIH HHS
  3. R01 EB032708/NIBIB NIH HHS
  4. K99 MH128772/NIMH NIH HHS
  5. P41 EB015902/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0atlasAtlasesestimationregistrationdeformationmodelsfruitcanmodelcrucialimagingstatisticsenablestandardizationinter-subjectinter-populationanalysesexistingmethodsbasedfluid/elastic/diffusionyieldhigh-qualityresultshumanbrainextendvarietychallengingareasneuroscienceanatomywormsfliesendworkpresentsgeneralprobabilisticdeepnetwork-basedframeworkflexiblyincorporatevariouslevelskeypointsupervisionappliedwideclassorganismsparticularrelevancealsodevelopsdeformablepiecewiserigidregularizedpreserveinter-observationdistancesneighborsmodelingconsiderationsshownimproveconstructionkey-pointalignmentacrossdiversitydatasetssmallsamplesizesincludingneuronpositionshermaphroditesfluorescencemicroscopymaleimagesflywingsCodeaccessiblehttps://githubcom/amin-nejat/Deformable-AtlasLearningProbabilisticPiecewiseRigidModelOrganismsviaGenerativeDeepNetworks

Similar Articles

Cited By